高中數學(xué)必修一知識點(diǎn)總結
一、知識點(diǎn)簡(jiǎn)介
知識點(diǎn)是網(wǎng)絡(luò )課程中信息傳遞的基本單元,研究知識點(diǎn)的表示與關(guān)聯(lián)對提高網(wǎng)絡(luò )課程的學(xué)習導航具有重要的作用。比如:“今天我學(xué)了如何演講”這顯然不是一個(gè)知識點(diǎn),這是一個(gè)知識面,別人看了也不知道你今天學(xué)了什么。再比如:“今天我學(xué)到了上臺演講時(shí)候身體不要隨意晃動(dòng)”。顯然這是一個(gè)具體的知識點(diǎn)。衡量日志里的一句話(huà)是不是知識點(diǎn),明確的知識點(diǎn)有兩個(gè)標準:“讓別人看完能理解”或者“通過(guò)練習我能掌握”。只要符合其中一個(gè),我們認為這是一個(gè)標準的知識點(diǎn)。知識點(diǎn)是知識中的最小單位,最具體的內容,有些情況也叫“考點(diǎn)”。
二、高中數學(xué)必修一知識點(diǎn)總結
上學(xué)的時(shí)候,說(shuō)起知識點(diǎn),應該沒(méi)有人不熟悉吧?知識點(diǎn)有時(shí)候特指教科書(shū)上或考試的知識。想要一份整理好的知識點(diǎn)嗎?以下是小編精心整理的高中數學(xué)必修一知識點(diǎn)總結,歡迎閱讀,希望大家能夠喜歡。
高中數學(xué)必修一知識點(diǎn)總結1
一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。
2、集合的中元素的三個(gè)特性:
。1)、元素的確定性;
。2)、元素的互異性;
。3)、元素的無(wú)序性
說(shuō)明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。
(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。
(3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1、 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2、集合的表示方法:列舉法與描述法。
注意。撼S脭导捌溆浄ǎ
非負整數集(即自然數集)記作:N
正整數集 N*或N+ 整數集Z 有理數集Q 實(shí)數集R
關(guān)于屬于的概念
集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上。
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。
、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}
、跀祵W(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}
4、集合的分類(lèi):
1、有限集 含有有限個(gè)元素的集合
2、無(wú)限集 含有無(wú)限個(gè)元素的集合
3、空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關(guān)系
1、包含關(guān)系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2、相等關(guān)系(55,且55,則5=5)
實(shí)例:設 A={x|x2-1=0} B={-1,1} 元素相同
結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B
、 任何一個(gè)集合是它本身的子集。AA
、谡孀蛹喝绻鸄B,且A1 B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)
、廴绻 AB, BC ,那么 AC
、 如果AB 同時(shí) BA 那么A=B
3、 不含任何元素的集合叫做空集,記為
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
三、集合的運算
1、交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集。
記作AB(讀作A交B),即AB={x|xA,且xB}。
2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集、記作:AB(讀作A并B),即AB={x|xA,或xB}。
3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,
A= A ,AB = BA。
4、全集與補集
(1)補集:設S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)
(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。
(3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U
高中數學(xué)必修一知識點(diǎn)總結2
本節知識包括函數的單調性、函數的奇偶性、函數的.周期性、函數的最值、函數的對稱(chēng)性和函數的圖象等知識點(diǎn)。函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱(chēng)性是學(xué)習函數的圖象的基礎,函數的圖象是它們的綜合。所以理解了前面的幾個(gè)知識點(diǎn),函數的圖象就迎刃而解了。
一、函數的單調性
1、函數單調性的定義
2、函數單調性的判斷和證明:(1)定義法(2)復合函數分析法(3)導數證明法(4)圖象法
二、函數的奇偶性和周期性
1、函數的奇偶性和周期性的定義
2、函數的奇偶性的判定和證明方法
3、函數的周期性的判定方法
三、函數的圖象
1、函數圖象的作法(1)描點(diǎn)法(2)圖象變換法
2、圖象變換包括圖象:平移變換、伸縮變換、對稱(chēng)變換、翻折變換。
常見(jiàn)考法
本節是段考和高考必不可少的考查內容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數的單調性、最值和圖象等。
誤區提醒
1、求函數的單調區間,必須先求函數的定義域,即遵循“函數問(wèn)題定義域優(yōu)先的原則”。
2、單調區間必須用區間來(lái)表示,不能用集合或不等式,單調區間一般寫(xiě)成開(kāi)區間,不必考慮端點(diǎn)問(wèn)題。
3、在多個(gè)單調區間之間不能用“或”和“”連接,只能用逗號隔開(kāi)。
4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關(guān)于原點(diǎn)對稱(chēng),則函數一定是非奇非偶函數。
5、作函數的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數的圖象。
高中數學(xué)必修一知識點(diǎn)總結3
【第一章:集合與函數概念】
一、集合有關(guān)概念
1、集合的含義
2、集合的中元素的三個(gè)特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3、集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集:N*或N+
整數集:Z
有理數集:Q
實(shí)數集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合{xR|x-3>2},{x|x-3>2}
3)語(yǔ)言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類(lèi):
(1)有限集含有有限個(gè)元素的集合
(2)無(wú)限集含有無(wú)限個(gè)元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1、“包含”關(guān)系—子集
注意:有兩種可能
(1)A是B的一部分,;
(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2、“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實(shí)例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:
、偃魏我粋(gè)集合是它本身的子集。AíA
、谡孀蛹喝绻鸄íB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄íB,BíC,那么AíC
、苋绻鸄íB同時(shí)BíA那么A=B
3、不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
4、子集個(gè)數:
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集
三、集合的運算
運算類(lèi)型交集并集補集
定義由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集。記作AB(讀作‘A交B’),即AB={x|xA,且xB}。
由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集、記作:AB(讀作‘A并B’),即AB={x|xA,或xB})。
【第二章:基本初等函數】
一、指數函數
(一)指數與指數冪的運算
1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*、
當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數。此時(shí),的次方根用符號表示、式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand)。
當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數、此時(shí),正數的正的次方根用符號表示,負的次方根用符號-表示。正的次方根與負的次方根可以合并成±(>0)。由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。
2、分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義
指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)也同樣可以推廣到有理數指數冪、
3、實(shí)數指數冪的運算性質(zhì)
(二)指數函數及其性質(zhì)
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R。
注意:指數函數的底數的取值范圍,底數不能是負數、零和一。
2、指數函數的圖象和性質(zhì)
【第三章:第三章函數的應用】
1、函數零點(diǎn)的概念:對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。
2、函數零點(diǎn)的意義:函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。即:方程有實(shí)數根函數的圖象與軸有交點(diǎn)函數有零點(diǎn)。
3、函數零點(diǎn)的求法:
求函數的零點(diǎn):
(1)(代數法)求方程的實(shí)數根。
(2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn)。
4、二次函數的零點(diǎn):
二次函數、
1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn)。
2)△=0,方程有兩相等實(shí)根(二重根),二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn)。
3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn)。
【高中數學(xué)必修一知識點(diǎn)總結】相關(guān)文章: