97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

高一數學(xué)必修一知識點(diǎn)總結

時(shí)間:2025-01-23 10:25:39 小英 總結 我要投稿

高一數學(xué)必修一知識點(diǎn)總結

  高一數學(xué)必修一的學(xué)習,需要大家對知識點(diǎn)進(jìn)行總結,這樣大家最大效率地提高自己的學(xué)習成績(jì),今天公文小編收集整理了高一數學(xué)必修一知識點(diǎn)總結,歡迎閱讀!

高一數學(xué)必修一知識點(diǎn)總結

  高一數學(xué)必修一知識點(diǎn)總結 1

  本節知識包括函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱(chēng)性和函數的圖象等知識點(diǎn)。函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱(chēng)性是學(xué)習函數的圖象的基礎,函數的圖象是它們的綜合。所以理解了前面的幾個(gè)知識點(diǎn),函數的圖象就迎刃而解了。

  一、函數的單調性

  1、函數單調性的定義

  2、函數單調性的判斷和證明:(1)定義法(2)復合函數分析法(3)導數證明法(4)圖象法

  二、函數的奇偶性和周期性

  1、函數的奇偶性和周期性的定義

  2、函數的奇偶性的判定和證明方法

  3、函數的周期性的判定方法

  三、函數的圖象

  1、函數圖象的作法(1)描點(diǎn)法(2)圖象變換法

  2、圖象變換包括圖象:平移變換、伸縮變換、對稱(chēng)變換、翻折變換。

  常見(jiàn)考法

  本節是段考和高考必不可少的考查內容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數的單調性、最值和圖象等。

  誤區提醒

  1、求函數的單調區間,必須先求函數的定義域,即遵循“函數問(wèn)題定義域優(yōu)先的原則”。

  2、單調區間必須用區間來(lái)表示,不能用集合或不等式,單調區間一般寫(xiě)成開(kāi)區間,不必考慮端點(diǎn)問(wèn)題。

  3、在多個(gè)單調區間之間不能用“或”和“”連接,只能用逗號隔開(kāi)。

  4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關(guān)于原點(diǎn)對稱(chēng),則函數一定是非奇非偶函數。

  5、作函數的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數的圖象。

  高一數學(xué)必修一知識點(diǎn)總結 2

  數學(xué)是利用符號語(yǔ)言研究數量、結構、變化以及空間模型等概念的一門(mén)學(xué)科。小編準備了高一數學(xué)必修1期末考知識點(diǎn),希望你喜歡。

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素.

  2、集合的中元素的三個(gè)特性:

  1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性

  說(shuō)明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素.

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素.

  (3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

  (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.

  3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法.

  注意。撼S脭导捌溆浄ǎ

  非負整數集(即自然數集)記作:N

  正整數集 N*或N+ 整數集Z 有理數集Q 實(shí)數集R

  關(guān)于屬于的概念

  集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A

  列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上.

  描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法.用確定的條件表示某些對象是否屬于這個(gè)集合的方法.

 、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}

 、跀祵W(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

  4、集合的分類(lèi):

  1.有限集 含有有限個(gè)元素的集合

  2.無(wú)限集 含有無(wú)限個(gè)元素的集合

  3.空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.包含關(guān)系子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.相等關(guān)系(55,且55,則5=5)

  實(shí)例:設 A={x|x2-1=0} B={-1,1} 元素相同

  結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

 、 任何一個(gè)集合是它本身的子集.AA

 、谡孀蛹:如果AB,且A1 B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)

 、廴绻 AB, BC ,那么 AC

 、 如果AB 同時(shí) BA 那么A=B

  3. 不含任何元素的集合叫做空集,記為

  規定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

  三、集合的運算

  1.交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.

  記作AB(讀作A交B),即AB={x|xA,且xB}.

  2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.

  3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,

  A= A ,AB = BA.

  4、全集與補集

  (1)補集:設S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)

  (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用U來(lái)表示.

  (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

  高一數學(xué)必修一知識點(diǎn)總結 3

  一、集合及其表示

  1、集合的含義:

  “集合”這個(gè)詞首先讓我們想到的是上體育課或者開(kāi)會(huì )時(shí)老師經(jīng)常喊的“全體集合”。數學(xué)上的“集合”和這個(gè)意思是一樣的,只不過(guò)一個(gè)是動(dòng)詞一個(gè)是名詞而已。

  所以集合的含義是:某些指定的對象集在一起就成為一個(gè)集合,簡(jiǎn)稱(chēng)集,其中每一個(gè)對象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構成了一個(gè)集合,每一個(gè)同學(xué)就稱(chēng)為這個(gè)集合的元素。

  2、集合的表示

  通常用大寫(xiě)字母表示集合,用小寫(xiě)字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

  有一些特殊的集合需要記憶:

  非負整數集(即自然數集)N正整數集N_或N+

  整數集Z有理數集Q實(shí)數集R

  集合的表示方法:列舉法與描述法。

 、倭信e法:{a,b,c……}

 、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜(lái)。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

 、壅Z(yǔ)言描述法:例:{不是直角三角形的三角形}

  例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  強調:描述法表示集合應注意集合的代表元素

  A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數組元素(x,y),集合B中只有元素y。

  3、集合的三個(gè)特性

 。1)無(wú)序性

  指集合中的元素排列沒(méi)有順序,如集合A={1,2},集合B={2,1},則集合A=B。

  例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

  解:,A=B

  注意:該題有兩組解。

 。2)互異性

  指集合中的元素不能重復,A={2,2}只能表示為{2}

 。3)確定性

  集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的。情況。

  集合的含義

  集合的中元素的三個(gè)特性:

  元素的確定性如:世界上的山

  元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

  3、集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  集合的表示方法:列舉法與描述法。

  注意:常用數集及其記法:

  非負整數集(即自然數集)記作:N

  正整數集NxN+整數集Z有理數集Q實(shí)數集R

  列舉法:{a,b,c……}

  描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。{x(R|x—3>2},{x|x—3>2}

  語(yǔ)言描述法:例:{不是直角三角形的三角形}

  Venn圖:

  4、集合的分類(lèi):

  有限集含有有限個(gè)元素的集合

  無(wú)限集含有無(wú)限個(gè)元素的集合

  空集不含任何元素的集合例:{x|x2=—5}

  對數函數

  對數函數的一般形式為,它實(shí)際上就是指數函數的反函數。因此指數函數里對于a的規定,同樣適用于對數函數。

  右圖給出對于不同大小a所表示的函數圖形:

  可以看到對數函數的圖形只不過(guò)的指數函數的圖形的關(guān)于直線(xiàn)y=x的對稱(chēng)圖形,因為它們互為反函數。

 。1)對數函數的定義域為大于0的實(shí)數集合。

 。2)對數函數的值域為全部實(shí)數集合。

 。3)函數總是通過(guò)(1,0)這點(diǎn)。

 。4)a大于1時(shí),為單調遞增函數,并且上凸;a小于1大于0時(shí),函數為單調遞減函數,并且下凹。

 。5)顯然對數函數。

  1、函數零點(diǎn)的定義

 。1)對于函數)(xfy,我們把方程0)(xf的實(shí)數根叫做函數)(xfy)的零點(diǎn)。

 。2)方程0)(xf有實(shí)根函數(yfx)的圖像與x軸有交點(diǎn)函數(yfx)有零點(diǎn)。因此判斷一個(gè)函數是否有零點(diǎn),有幾個(gè)零點(diǎn),就是判斷方程0)(xf是否有實(shí)數根,有幾個(gè)實(shí)數根。函數零點(diǎn)的求法:解方程0)(xf,所得實(shí)數根就是(fx)的零點(diǎn)(3)變號零點(diǎn)與不變號零點(diǎn)

 、偃艉瘮(fx)在零點(diǎn)0x左右兩側的函數值異號,則稱(chēng)該零點(diǎn)為函數(fx)的變號零點(diǎn)。②若函數(fx)在零點(diǎn)0x左右兩側的函數值同號,則稱(chēng)該零點(diǎn)為函數(fx)的不變號零點(diǎn)。

 、廴艉瘮(fx)在區間,ab上的圖像是一條連續的曲線(xiàn),則0

  2、函數零點(diǎn)的判定

 。1)零點(diǎn)存在性定理:如果函數)(xfy在區間],[ba上的圖象是連續不斷的曲線(xiàn),并且有(fa)(fb),那么,函數(xfy)在區間,ab內有零點(diǎn),即存在,(0bax,使得0)(0xf,這個(gè)0x也就是方程0)(xf的根。

 。2)函數)(xfy零點(diǎn)個(gè)數(或方程0)(xf實(shí)數根的個(gè)數)確定方法

 、俅鷶捣ǎ汉瘮)(xfy的零點(diǎn)0)(xf的根;②(幾何法)對于不能用求根公式的方程,可以將它與函數)(xfy的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn)。

 。3)零點(diǎn)個(gè)數確定

  0)(xfy有2個(gè)零點(diǎn)0)(xf有兩個(gè)不等實(shí)根;0)(xfy有1個(gè)零點(diǎn)0)(xf有兩個(gè)相等實(shí)根;0)(xfy無(wú)零點(diǎn)0)(xf無(wú)實(shí)根;對于二次函數在區間,ab上的零點(diǎn)個(gè)數,要結合圖像進(jìn)行確定。

  3、二分法

 。1)二分法的定義:對于在區間[,]ab上連續不斷且(fa)(fb)的函數(yfx),通過(guò)不斷地把函數(yfx)的零點(diǎn)所在的區間一分為二,使區間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)的近似值的方法叫做二分法;

 。2)用二分法求方程的近似解的步驟:

 、俅_定區間[,]ab,驗證(fa)(fb)給定精確度e;

 、谇髤^間(,)ab的中點(diǎn)c;③計算(fc);

  (ⅰ)若(fc),則c就是函數的零點(diǎn);

 。á)若(fa)(fc),則令bc(此時(shí)零點(diǎn)0(,)xac);(ⅲ)若(fc)(fb),則令ac(此時(shí)零點(diǎn)0(,)xcb);

 、芘袛嗍欠襁_到精確度e,即ab,則得到零點(diǎn)近似值為a(或b);否則重復②至④步。

  集合間的基本關(guān)系

  1、子集,A包含于B,記為:,有兩種可能

  (1)A是B的一部分,

  (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

  反之:集合A不包含于集合B,記作。

  如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個(gè)集合的關(guān)系可以表示為,B=C。A是C的子集,同時(shí)A也是C的真子集。

  2、真子集:如果A?B,且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

  3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。

  4、有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25-1=31個(gè)真子集,25-2=30個(gè)非空真子集。

  例:集合共有個(gè)子集。(13年高考第4題,簡(jiǎn)單)

  練習:A={1,2,3},B={1,2,3,4},請問(wèn)A集合有多少個(gè)子集,并寫(xiě)出子集,B集合有多少個(gè)非空真子集,并將其寫(xiě)出來(lái)。

  解析:

  集合A有3個(gè)元素,所以有23=8個(gè)子集。分別為:①不含任何元素的子集Φ;②含有1個(gè)元素的子集{1}{2}{3};③含有兩個(gè)元素的子集{1,2}{1,3}{2,3};④含有三個(gè)元素的子集{1,2,3}。

  集合B有4個(gè)元素,所以有24-2=14個(gè)非空真子集。具體的子集自己寫(xiě)出來(lái)。

  此處這么羅嗦主要是為了讓同學(xué)們注意寫(xiě)的順序,數學(xué)就是要講究嚴謹性和邏輯性的。一定要養成自己的邏輯習慣。如果就是為了提高計算能力倒不如直接去菜場(chǎng)賣(mài)菜算了,絕對能飛速提高的,那學(xué)數學(xué)也沒(méi)什么必要了。

  一、函數模型及其應用

  本節主要包括函數的模型、函數的應用等知識點(diǎn)。主要是理解函數解應用題的一般步驟靈活利用函數解答實(shí)際應用題。

  1、常見(jiàn)的函數模型有一次函數模型、二次函數模型、指數函數模型、對數函數模型、分段函數模型等。

  2、用函數解應用題的基本步驟是:

 。1)閱讀并且理解題意。(關(guān)鍵是數據、字母的實(shí)際意義);

 。2)設量建模;

 。3)求解函數模型;

 。4)簡(jiǎn)要回答實(shí)際問(wèn)題。

  常見(jiàn)考法:

  本節知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數和較復雜的函數的最值等問(wèn)題,屬于拔高題,難度較大。

  誤區提醒:

  1、求解應用性問(wèn)題時(shí),不僅要考慮函數本身的定義域,還要結合實(shí)際問(wèn)題理解自變量的取值范圍。

  2、求解應用性問(wèn)題時(shí),首先要弄清題意,分清條件和結論,抓住關(guān)鍵詞和量,理順數量關(guān)系,然后將文字語(yǔ)言轉化成數學(xué)語(yǔ)言,建立相應的數學(xué)模型。

  【典型例題】

  例1:

 。1)某種儲蓄的月利率是0.36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數x之間的函數關(guān)系式,并計算5個(gè)月后的本息和(不計復利)。

 。2)按復利計算利息的一種儲蓄,本金為a元,每期利率為r,設本利和為y,存期為x,寫(xiě)出本利和y隨存期x變化的函數式。如果存入本金1000元,每期利率2.25%,試計算5期后的本利和是多少?解:(1)利息=本金×月利率×月數。y=100+100×0.36%·x=100+0.36x,當x=5時(shí),y=101.8,∴5個(gè)月后的本息和為101.8元。

  例2:

  某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據市場(chǎng)調查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬(wàn)元)

 。1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數,并寫(xiě)出它們的函數關(guān)系式。

 。2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬(wàn)元。(精確到1萬(wàn)元)。

  集合

  集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數學(xué)元素。例如:

  1、分散的人或事物聚集到一起;使聚集:緊急~。

  2、數學(xué)名詞。一組具有某種共同性質(zhì)的數學(xué)元素:有理數的~。

  3、口號等等。集合在數學(xué)概念中有好多概念,如集合論:集合是現代數學(xué)的基本概念,專(zhuān)門(mén)研究集合的理論叫做集合論?低(Cantor,G.F.P.,1845年—1918年,德國數學(xué)家先驅?zhuān)羌险摰,目前集合論的基本思想已?jīng)滲透到現代數學(xué)的所有領(lǐng)域。

  集合,在數學(xué)上是一個(gè)基礎概念。什么叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過(guò)直觀(guān)、公理的方法來(lái)下“定義”。集合

  集合是把人們的直觀(guān)的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個(gè)整體(或稱(chēng)為單體),這一整體就是集合。組成一集合的那些對象稱(chēng)為這一集合的元素(或簡(jiǎn)稱(chēng)為元)。

  元素與集合的關(guān)系

  元素與集合的關(guān)系有“屬于”與“不屬于”兩種。

  集合與集合之間的關(guān)系

  某些指定的對象集在一起就成為一個(gè)集合集合符號,含有有限個(gè)元素叫有限集,含有無(wú)限個(gè)元素叫無(wú)限集,空集是不含任何元素的集,記做Φ?占侨魏渭系淖蛹,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性!赫f(shuō)明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱(chēng)作是B的子集,寫(xiě)作A?B。若A是B的子集,且A不等于B,則A稱(chēng)作是B的真子集,一般寫(xiě)作A?B。中學(xué)教材課本里將?符號下加了一個(gè)≠符號(如右圖),不要混淆,考試時(shí)還是要以課本為準。所有男人的集合是所有人的集合的真子集!

  集合的幾種運算法則

  并集:以屬于A(yíng)或屬于B的元素為元素的集合稱(chēng)為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以屬于A(yíng)且屬于B的元差集表示

  素為元素的集合稱(chēng)為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因為A和B中都有1,5,所以A∩B={1,5}。再來(lái)看看,他們兩個(gè)中含有1,2,3,5這些個(gè)元素,不管多少,反正不是你有,就是我有。那么說(shuō)A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數的數有多少個(gè)。結果是3,5,7每項減集合

  1再相乘。48個(gè)。對稱(chēng)差集:設A,B為集合,A與B的對稱(chēng)差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱(chēng)差運算的另一種定義是:A?B=(A∪B)-(A∩B)無(wú)限集:定義:集合里含有無(wú)限個(gè)元素的集合叫做無(wú)限集有限集:令N_是正整數的全體,且N_n={1,2,3,……,n},如果存在一個(gè)正整數n,使得集合A與N_n一一對應,那么A叫做有限集合。差:以屬于A(yíng)而不屬于B的元素為元素的集合稱(chēng)為A與B的差(集)。記作:AB={x│x∈A,x不屬于B}。注:空集包含于任何集合,但不能說(shuō)“空集屬于任何集合”。補集:是從差集中引出的概念,指屬于全集U不屬于集合A的元素組成的集合稱(chēng)為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬于A(yíng)}空集也被認為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中沒(méi)有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術(shù)當中,常常把CuA寫(xiě)成~A。

  集合元素的性質(zhì)

  1.確定性:每一個(gè)對象都能確定是不是某一集合的元素,沒(méi)有確定性就不能成為集合,例如“個(gè)子高的同學(xué)”“很小的數”都不能構成集合。這個(gè)性質(zhì)主要用于判斷一個(gè)集合是否能形成集合。

  2.獨立性:集合中的元素的個(gè)數、集合本身的個(gè)數必須為自然數。

  3.互異性:集合中任意兩個(gè)元素都是不同的對象。如寫(xiě)成{1,1,2},等同于{1,2};ギ愋允辜现械脑厥菦](méi)有重復,兩個(gè)相同的對象在同一個(gè)集合中時(shí),只能算作這個(gè)集合的一個(gè)元素。

  4.無(wú)序性:{a,b,c}{c,b,a}是同一個(gè)集合。

  5.純粹性:所謂集合的純粹性,用個(gè)例子來(lái)表示。集合A={x|x

  高一數學(xué)必修一知識點(diǎn)總結 4

  【公式一】

  設α為任意角,終邊相同的角的同一三角函數的值相等:

  sin(2kπ+α)=sinα(k∈Z)

  cos(2kπ+α)=cosα(k∈Z)

  tan(2kπ+α)=tanα(k∈Z)

  cot(2kπ+α)=cotα(k∈Z)

  【公式二】

  設α為任意角,π+α的三角函數值與α的三角函數值之間的關(guān)系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  【公式三】

  任意角α與-α的三角函數值之間的關(guān)系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  【公式四】

  利用公式二和公式三可以得到π-α與α的三角函數值之間的關(guān)系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  【公式五】

  利用公式一和公式三可以得到2π-α與α的三角函數值之間的關(guān)系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  【公式六】

  π/2±α及3π/2±α與α的三角函數值之間的關(guān)系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  【高一數學(xué)函數復習資料】

  一、定義與定義式:

  自變量x和因變量y有如下關(guān)系:

  y=kx+b

  則此時(shí)稱(chēng)y是x的一次函數。

  特別地,當b=0時(shí),y是x的正比例函數。

  即:y=kx(k為常數,k≠0)

  二、一次函數的性質(zhì):

  的變化值與對應的x的變化值成正比例,比值為k

  即:y=kx+b(k為任意不為零的實(shí)數b取任何實(shí)數)

  當x=0時(shí),b為函數在y軸上的截距。

  三、一次函數的圖像及性質(zhì):

  作法與圖形:通過(guò)如下3個(gè)步驟

  (1)列表;

  (2)描點(diǎn);

  (3)連線(xiàn),可以作出一次函數的圖像——一條直線(xiàn)。因此,作一次函數的圖像只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖像與x軸和y軸的交點(diǎn))

  性質(zhì):(1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。(2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過(guò)原點(diǎn)。

  ,b與函數圖像所在象限:

  當k>0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;

  當k

  當b>0時(shí),直線(xiàn)必通過(guò)一、二象限;

  當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)

  當b

  特別地,當b=O時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數的圖像。

  這時(shí),當k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當k

  四、確定一次函數的表達式:

  已知點(diǎn)A(x1,y1);B(x2,y2),請確定過(guò)點(diǎn)A、B的一次函數的表達式。

  (1)設一次函數的表達式(也叫解析式)為y=kx+b。

  (2)因為在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式y=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

  (3)解這個(gè)二元一次方程,得到k,b的值。

  (4)最后得到一次函數的表達式。

  五、一次函數在生活中的應用:

  當時(shí)間t一定,距離s是速度v的一次函數。s=vt。

  當水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數。設水池中原有水量S。g=S-ft。

  六、常用公式:(不全,希望有人補充)

  求函數圖像的k值:(y1-y2)/(x1-x2)

  求與x軸平行線(xiàn)段的中點(diǎn):|x1-x2|/2

  求與y軸平行線(xiàn)段的中點(diǎn):|y1-y2|/2

  求任意線(xiàn)段的長(cháng):√(x1-x2)^2+(y1-y2)^2(注:根號下(x1-x2)與(y1-y2)的平方和)

  高一數學(xué)必修一知識點(diǎn)總結 5

  【基本初等函數】

  一、指數函數

 。ㄒ唬┲笖蹬c指數冪的運算

  1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

  當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數。此時(shí),的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand)。

  當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數。此時(shí),正數的正的次方根用符號表示,負的次方根用符號—表示。正的次方根與負的次方根可以合并成±(>0)。由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。

  注意:當是奇數時(shí),當是偶數時(shí),

  2、分數指數冪

  正數的分數指數冪的意義,規定:

  0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義

  指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)也同樣可以推廣到有理數指數冪。

  3、實(shí)數指數冪的運算性質(zhì)

 。ǘ┲笖岛瘮导捌湫再|(zhì)

  1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R。

  注意:指數函數的底數的取值范圍,底數不能是負數、零和1。

  2、指數函數的圖象和性質(zhì)

  高一數學(xué)必修一知識點(diǎn)總結 6

  高一數學(xué)集合有關(guān)概念

  集合的含義

  集合的中元素的三個(gè)特性:

  元素的確定性如:世界上的山

  元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

  3。集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  集合的表示方法:列舉法與描述法。

  注意:常用數集及其記法:

  非負整數集(即自然數集)記作:N

  正整數集N_N+整數集Z有理數集Q實(shí)數集R

  列舉法:{a,b,c……}

  描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。{x(R|x—3>2},{x|x—3>2}

  語(yǔ)言描述法:例:{不是直角三角形的三角形}

  Venn圖:

  4、集合的分類(lèi):

  有限集含有有限個(gè)元素的集合

  無(wú)限集含有無(wú)限個(gè)元素的集合

  空集不含任何元素的集合例:{x|x2=—5}

  高一數學(xué)必修一知識點(diǎn)總結 7

  二次函數

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

  (a,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

  則稱(chēng)y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  II.二次函數的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

  頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]

  注:在3種形式的互相轉化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函數的圖像

  在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線(xiàn)。

  IV.拋物線(xiàn)的性質(zhì)

  1.拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)x=-b/2a。對稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

  特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)

  2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為

  P(-b/2a,(4ac-b^2)/4a)

  當-b/2a=0時(shí),P在y軸上;當Δ=b^2-4ac=0時(shí),P在x軸上。

  3.二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。

  當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。

  |a|越大,則拋物線(xiàn)的開(kāi)口越小。

  高一數學(xué)必修一知識點(diǎn)總結 8

  指數函數

  (一)指數與指數冪的運算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

  當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數.此時(shí),的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand).

  當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數.此時(shí),正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。

  注意:當是奇數時(shí),當是偶數時(shí),

  2.分數指數冪

  正數的分數指數冪的意義,規定:

  0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義

  指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)也同樣可以推廣到有理數指數冪.

  3.實(shí)數指數冪的運算性質(zhì)

  (二)指數函數及其性質(zhì)

  1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.

  注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

  2、指數函數的圖象和性質(zhì)

  空間幾何體表面積體積公式:

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、a-邊長(cháng),S=6a2,V=a3

  4、長(cháng)方體a-長(cháng),b-寬,c-高S=2(ab+ac+bc)V=abc

  5、棱柱S-h-高V=Sh

  6、棱錐S-h-高V=Sh/3

  7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

  9、圓柱r-底半徑,h-高,C—底面周長(cháng)S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

  11、r-底半徑h-高V=πr^2h/3

  12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d直徑V=4/3πr^3=πd^3/6

  14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

  16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

  17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線(xiàn)是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線(xiàn)是拋物線(xiàn)形)

  人教版高一數學(xué)必修一知識點(diǎn)梳理

  1、柱、錐、臺、球的結構特征

  (1)棱柱:

  定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點(diǎn)字母,如五棱柱或用對角線(xiàn)的端點(diǎn)字母,如五棱柱。

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

  分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點(diǎn)字母,如五棱錐

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

  (3)棱臺:

  定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

  分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱態(tài)、四棱臺、五棱臺等

  表示:用各頂點(diǎn)字母,如五棱臺

  幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點(diǎn)

  (4)圓柱:

  定義:以矩形的一邊所在的直線(xiàn)為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。

  幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側面展開(kāi)圖是一個(gè)矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

  幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)扇形。

  (6)圓臺:

  定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個(gè)圓;②側面母線(xiàn)交于原圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)弓形。

  (7)球體:

  定義:以半圓的直徑所在直線(xiàn)為旋轉軸,半圓面旋轉一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(cháng)度;

  俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(cháng)度和寬度;

  側視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

  3、空間幾何體的直觀(guān)圖——斜二測畫(huà)法

  斜二測畫(huà)法特點(diǎn):

 、僭瓉(lái)與x軸平行的線(xiàn)段仍然與x平行且長(cháng)度不變;

 、谠瓉(lái)與y軸平行的線(xiàn)段仍然與y平行,長(cháng)度為原來(lái)的一半。

  高一數學(xué)必修一知識點(diǎn)總結 9

  一、集合有關(guān)概念

  1.集合的含義

  2.集合的中元素的三個(gè)特性:

  (1)元素的確定性,(2)元素的互異性,(3)元素的無(wú)序性,3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2)集合的表示方法:列舉法與描述法。

  ?注意:常用數集及其記法:

  非負整數集(即自然數集)記作:N

  正整數集N_N+整數集Z有理數集Q實(shí)數集R

  1)列舉法:{a,b,c……}

  2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。{x?R|x-3>2},{x|x-3>2}

  3)語(yǔ)言描述法:例:{不是直角三角形的三角形}

  4)Venn圖:

  4、集合的分類(lèi):

  (1)有限集含有有限個(gè)元素的集合

  (2)無(wú)限集含有無(wú)限個(gè)元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

  實(shí)例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

  即:①任何一個(gè)集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄?B,B?C,那么A?C

 、苋绻鸄?B同時(shí)B?A那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規定:空集是任何集合的子集,空集是任何非空集合的真子集。

  有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

  三、集合的運算

  運算類(lèi)型交集并集補集

  定義由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

  由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

  設S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)

  例題:

  1.下列四組對象,能構成集合的是()

  A某班所有高個(gè)子的學(xué)生B的藝術(shù)家C一切很大的書(shū)D倒數等于它自身的實(shí)數

  2.集合{a,b,c}的真子集共有個(gè)

  3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關(guān)系是.

  4.設集合A=,B=,若AB,則的取值范圍是

  5.50名學(xué)生做的物理、化學(xué)兩種實(shí)驗,已知物理實(shí)驗做得正確得有40人,化學(xué)實(shí)驗做得正確得有31人,兩種實(shí)驗都做錯得有4人,則這兩種實(shí)驗都做對的有人。

  6.用描述法表示圖中陰影部分的點(diǎn)(含邊界上的點(diǎn))組成的集合M=.

  7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

  二、函數的有關(guān)概念

  1.函數的概念:設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.

  注意:

  1.定義域:能使函數式有意義的實(shí)數x的集合稱(chēng)為函數的定義域。

  求函數的定義域時(shí)列不等式組的主要依據是:

  (1)分式的分母不等于零;

  (2)偶次方根的被開(kāi)方數不小于零;

  (3)對數式的真數必須大于零;

  (4)指數、對數式的底必須大于零且不等于1.

  (5)如果函數是由一些基本函數通過(guò)四則運算結合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.

  (6)指數為零底不可以等于零,(7)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義.

  相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無(wú)關(guān));②定義域一致(兩點(diǎn)必須同時(shí)具備)

  (見(jiàn)課本21頁(yè)相關(guān)例2)

  2.值域:先考慮其定義域

  (1)觀(guān)察法

  (2)配方法

  (3)代換法

  3.函數圖象知識歸納

  (1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上.

  (2)畫(huà)法

  A、描點(diǎn)法:

  B、圖象變換法

  常用變換方法有三種

  1)平移變換

  2)伸縮變換

  3)對稱(chēng)變換

  4.區間的概念

  (1)區間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間

  (2)無(wú)窮區間

  (3)區間的數軸表示.

  5.映射

  一般地,設A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有確定的元素y與之對應,那么就稱(chēng)對應f:AB為從集合A到集合B的一個(gè)映射。記作f:A→B

  6.分段函數

  (1)在定義域的不同部分上有不同的解析表達式的函數。

  (2)各部分的自變量的取值情況.

  (3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.

  補充:復合函數

  如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱(chēng)為f、g的復合函數。

  二.函數的性質(zhì)

  1.函數的單調性(局部性質(zhì))

  (1)增函數

  設函數y=f(x)的定義域為I,如果對于定義域I內的某個(gè)區間D內的任意兩個(gè)自變量x1,x2,當x1

  如果對于區間D上的任意兩個(gè)自變量的值x1,x2,當x1f(x2),那么就說(shuō)f(x)在這個(gè)區間上是減函數.區間D稱(chēng)為y=f(x)的單調減區間.

  注意:函數的單調性是函數的局部性質(zhì);

  (2)圖象的特點(diǎn)

  如果函數y=f(x)在某個(gè)區間是增函數或減函數,那么說(shuō)函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的

  (3).函數單調區間與單調性的判定方法

  (A)定義法:

  ○1任取x1,x2∈D,且x1

  ○2作差f(x1)-f(x2);

  ○3變形(通常是因式分解和配方);

  ○4定號(即判斷差f(x1)-f(x2)的正負);

  ○5下結論(指出函數f(x)在給定的區間D上的單調性).

  (B)圖象法(從圖象上看升降)

  (C)復合函數的單調性

  復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關(guān),其規律:“同增異減”

  注意:函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫(xiě)成其并集.

  8.函數的奇偶性(整體性質(zhì))

  (1)偶函數

  一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

  (2).奇函數

  一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.

  (3)具有奇偶性的函數的圖象的特征

  偶函數的圖象關(guān)于y軸對稱(chēng);奇函數的圖象關(guān)于原點(diǎn)對稱(chēng).

  利用定義判斷函數奇偶性的步驟:

  ○1首先確定函數的定義域,并判斷其是否關(guān)于原點(diǎn)對稱(chēng);

  ○2確定f(-x)與f(x)的關(guān)系;

  ○3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.

  (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;

  (3)利用定理,或借助函數的圖象判定.

  9、函數的解析表達式

  (1).函數的解析式是函數的一種表示方法,要求兩個(gè)變量之間的函數關(guān)系時(shí),一是要求出它們之間的對應法則,二是要求出函數的定義域.

  (2)求函數的解析式的主要方法有:

  1)湊配法

  2)待定系數法

  3)換元法

  4)消參法

  10.函數(小)值(定義見(jiàn)課本p36頁(yè))

  ○1利用二次函數的性質(zhì)(配方法)求函數的(小)值

  ○2利用圖象求函數的(小)值

  ○3利用函數單調性的判斷函數的(小)值:

  如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有值f(b);

  如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

  例題:

  1.求下列函數的定義域:

 、泞

  2.設函數的定義域為,則函數的定義域為_(kāi)_

  3.若函數的定義域為,則函數的定義域是

  4.函數,若,則=

  6.已知函數,求函數,的解析式

  7.已知函數滿(mǎn)足,則=。

  8.設是R上的奇函數,且當時(shí),,則當時(shí)=

  在R上的解析式為

  9.求下列函數的單調區間:

  10.判斷函數的單調性并證明你的結論.

  11.設函數判斷它的奇偶性并且求證

  高一數學(xué)必修一知識點(diǎn)總結 10

  幾何體和體積具有柱、錐、臺、球的結構特征

  (1)棱柱:

  幾何特征:兩個(gè)底面是平行于對應邊的全等多邊形;側面和對角為平行四邊形;側邊平行相等;平行于底面的截面是與底面相等的多邊形.

  (2)棱錐

  幾何特征:側面和對角為三角形;平行于底面的截面與底面相似,相似比等于從頂點(diǎn)到截面距離和高比的平方.

  (3)棱臺:

  幾何特征:上下底面是相似的平行多邊形側面是梯形側邊交給原棱錐的頂點(diǎn)

  (4)圓柱:定義:以矩形一側所在的直線(xiàn)為軸旋轉,其側旋轉

  幾何特征:底面為全等圓;母線(xiàn)與軸平行;軸垂直于底圓的半徑;側展圖為矩形.

  (5)圓錐:定義:旋轉軸以直角三角形的直角邊為旋轉軸,旋轉一周

  幾何特征:底面為圓;母線(xiàn)交于圓錐的頂點(diǎn);側展圖為扇形.

  (6)圓臺:定義:旋轉軸以垂直直角梯形和底部腰部為旋轉軸,旋轉一周

  幾何特征:上下底面有兩個(gè)圓;側母線(xiàn)交給原圓錐的頂點(diǎn);側展圖為弓形.

  (7)球體:定義:以半圓直徑直線(xiàn)為旋轉軸,半圓面旋轉一周形成的幾何體

  幾何特征:球的截面是圓的;球面上任何一點(diǎn)到球心的距離等于半徑.

  2.空間幾何三視圖

  定義三個(gè)視圖:正視圖(光線(xiàn)從幾何前面投影到后面);側視圖(從左到右)

  俯視圖(從上到下)

  注:正視圖反映物體的高度和長(cháng)度;俯視圖反映物體的長(cháng)度和寬度;側視圖反映物體的高度和寬度.

  3.空間幾何直觀(guān)圖-斜二測繪法

  斜二測繪法特點(diǎn):與x軸平行的線(xiàn)段仍與x平行,長(cháng)度不變;

  與y軸平行的線(xiàn)段仍與y平行,長(cháng)度為原來(lái)的一半.

  4.柱、錐、臺的表面積和體積

  (1)幾何體的表面積是幾何體各個(gè)面積的和.

  (2)特殊幾何體表面積公式(c底部周長(cháng),h為高,為斜高,l為母線(xiàn))

  (3)柱、錐、臺的體積公

【高一數學(xué)必修一知識點(diǎn)總結】相關(guān)文章:

高一數學(xué)必修一知識點(diǎn)總結歸納08-20

高一政治必修一知識點(diǎn)總結10-17

高一語(yǔ)文必修一知識點(diǎn)總結09-18

高一物理必修一知識點(diǎn)總結10-19

高一地理必修一知識點(diǎn)總結07-28

高一生物必修二知識點(diǎn)總結06-16

高中數學(xué)必修二知識點(diǎn)總結09-17

高一數學(xué)知識點(diǎn)總結(精選12篇)07-15

高中政治必修一知識點(diǎn)總結02-20