高一數學(xué)必修一教案
如何抓好數學(xué)教學(xué)工作
一、保持和提高學(xué)生學(xué)習數學(xué)的興趣
興趣是最好的老師,興趣對于一個(gè)人認識新事物,探求新知識的重要性,起著(zhù)非凡的影響作用。小學(xué)數學(xué)教學(xué)中,首要應重視培養學(xué)生正確的學(xué)習動(dòng)機、良好的心理品質(zhì)。
二、重視學(xué)生的發(fā)散思維,培養創(chuàng )新能力
新課標中的教學(xué)目標,是幫助每個(gè)學(xué)生進(jìn)行有效的學(xué)習,能夠按照自己的性向得到盡可能的發(fā)揮,以獲取新的知識,因為學(xué)生的大部分創(chuàng )新都是通過(guò)發(fā)散思維獲得的。因此,課堂教學(xué)必須以培養學(xué)生的創(chuàng )新精神為目標,改進(jìn)教學(xué)方式,把學(xué)習的主動(dòng)權交給學(xué)生,多給學(xué)生一些思考的時(shí)間、多一些表現機會(huì )、多一些創(chuàng )造的信心、多一些成功的體會(huì )。
三、提高教師素質(zhì),注重教學(xué)水平
教學(xué)的一切活動(dòng)始終圍繞學(xué)生,教學(xué)的一切因素最終作用于學(xué)生。面對數學(xué)新課程、新教材的實(shí)施,更應提高課堂教學(xué)效果,這就要求教師必須適應時(shí)代要求,更新觀(guān)念,在實(shí)施課堂教學(xué)時(shí),不能僅僅滿(mǎn)足于將書(shū)本上的有限知識傳授給學(xué)生,而要根據學(xué)生身心的發(fā)展規律、年齡特點(diǎn),認真研究、探討教學(xué)方式方法。要從學(xué)生全面發(fā)展的目標出發(fā)來(lái)組織和實(shí)施自己的課堂教學(xué)。課改要求新時(shí)期的教師應該能夠駕馭各種類(lèi)型的學(xué)生,并使他們各自的特長(cháng)都充分得到發(fā)揮,這就要求教師需要終生學(xué)習,拓寬知識面,提高自身的整體素質(zhì)修養,改進(jìn)傳統的教學(xué)模式,創(chuàng )新教學(xué)方法和技巧,只有這樣才會(huì )真正地實(shí)現與時(shí)俱進(jìn)。
高一數學(xué)必修一教案(精選10篇)
作為一名教師,常常需要準備教案,教案是實(shí)施教學(xué)的主要依據,有著(zhù)至關(guān)重要的作用。教案應該怎么寫(xiě)才好呢?以下是小編幫大家整理的高一數學(xué)必修一教案(精選10篇),歡迎大家借鑒與參考,希望對大家有所幫助。
高一數學(xué)必修一教案1
重點(diǎn)難點(diǎn)教學(xué):
1.正確理解映射的概念;
2.函數相等的兩個(gè)條件;
3.求函數的定義域和值域。
教學(xué)過(guò)程:
1. 使學(xué)生熟練掌握函數的概念和映射的定義;
2. 使學(xué)生能夠根據已知條件求出函數的定義域和值域; 3. 使學(xué)生掌握函數的三種表示方法。
教學(xué)內容:
1.函數的定義
設A、B是兩個(gè)非空的數集,如果按照某種確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數fx和它對應,那么稱(chēng):fAB81為從集合A到集合B的一個(gè)函數(function),記作:yfxxA
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{|}fxxA83叫值域(range)。顯然,值域是集合B的子集。
注意:
、 “y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;
、诤瘮捣枴皔=f(x)”中的f(x)表示與x對應的函數值,一個(gè)數,而不是f乘x.
2.構成函數的三要素 定義域、對應關(guān)系和值域。
3、映射的定義
設A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應關(guān)系f,使對于集合A中的任意
一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱(chēng)對應f:A→B為從 集合A到集合B的一個(gè)映射。
4. 區間及寫(xiě)法:
設a、b是兩個(gè)實(shí)數,且a
(1) 滿(mǎn)足不等式axb8080的實(shí)數x的集合叫做閉區間,表示為[a,b];
(2) 滿(mǎn)足不等式axb8787的實(shí)數x的集合叫做開(kāi)區間,表示為(a,b);
5.函數的三種表示方法
、俳馕龇
、诹斜矸
、蹐D像法
高一數學(xué)必修一教案2
教學(xué)目標
1.使學(xué)生掌握的概念,圖象和性質(zhì).
(1)能根據定義判斷形如什么樣的函數是,了解對底數的限制條件的合理性,明確的定義域.
(2)能在基本性質(zhì)的指導下,用列表描點(diǎn)法畫(huà)出的圖象,能從數形兩方面認識的性質(zhì).
(3)能利用的性質(zhì)比較某些冪形數的大小,會(huì )利用的圖象畫(huà)出形如的圖象.
2.通過(guò)對的概念圖象性質(zhì)的學(xué)習,培養學(xué)生觀(guān)察,分析歸納的能力,進(jìn)一步體會(huì )數形結合的思想方法.
3.通過(guò)對的研究,讓學(xué)生認識到數學(xué)的應用價(jià)值,激發(fā)學(xué)生學(xué)習數學(xué)的興趣.使學(xué)生善于從現實(shí)生活中數學(xué)的發(fā)現問(wèn)題,解決問(wèn)題.教學(xué)建議
教材分析
(1)是在學(xué)生系統學(xué)習了函數概念,基本掌握了函數的性質(zhì)的基礎上進(jìn)行研究的,它是重要的基本初等函數之一,作為常見(jiàn)函數,它既是函數概念及性質(zhì)的第一次應用,也是今后學(xué)習對數函數的基礎,同時(shí)在生活及生產(chǎn)實(shí)際中有著(zhù)廣泛的應用,所以應重點(diǎn)研究.
(2)本節的教學(xué)重點(diǎn)是在理解定義的基礎上掌握的圖象和性質(zhì).難點(diǎn)是對底數在和時(shí),函數值變化情況的區分.
(3)是學(xué)生完全陌生的一類(lèi)函數,對于這樣的函數應怎樣進(jìn)行較為系統的理論研究是學(xué)生面臨的重要問(wèn)題,所以從的研究過(guò)程中得到相應的結論固然重要,但更為重要的是要了解系統研究一類(lèi)函數的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì )研究的方法,以便能將其遷移到其他函數的研究.
教法建議
(1)關(guān)于的定義按照課本上說(shuō)法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是.
(2)對底數的限制條件的理解與認識也是認識的重要內容.如果有可能盡量讓學(xué)生自己去研究對底數,指數都有什么限制要求,教師再給予補充或用具體例子加以說(shuō)明,因為對這個(gè)條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類(lèi)討論,還關(guān)系到后面學(xué)習對數函數中底數的認識,所以一定要真正了解它的由來(lái).
關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應避免描點(diǎn)前的盲目列表計算,也應避免盲目的連點(diǎn)成線(xiàn),要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當之處,所以應在列表描點(diǎn)前先把函數的性質(zhì)作一些簡(jiǎn)單的討論,取得對要畫(huà)圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點(diǎn)得圖象.
高一數學(xué)必修一教案3
教學(xué)目的:
。1)理解兩個(gè)集合的并集與交集的的含義,會(huì )求兩個(gè)簡(jiǎn)單集合的并集與交集;
。2)能用Venn圖表達集合的關(guān)系及運算,體會(huì )直觀(guān)圖示對理解抽象概念的作用。
課 型:
新授課
教學(xué)重點(diǎn):
集合的交集與并集的概念;
教學(xué)難點(diǎn):
集合的交集與并集 “是什么”,“為什么”,“怎樣做”;
教學(xué)過(guò)程:
一、 引入課題
我們兩個(gè)實(shí)數除了可以比較大小外,還可以進(jìn)行加法運算,類(lèi)比實(shí)數的加法運算,兩個(gè)集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
二、 新課教學(xué)
1、 并集
一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱(chēng)為集合A與B的并集(Union)
記作:A∪B 讀作:“A并B”
即: A∪B={x|x∈A,或x∈B}
Venn圖表示:
說(shuō)明:兩個(gè)集合求并集,結果還是一個(gè)集合,是由集合A與B的所有元素組成的集合(重復元素只看成一個(gè)元素)。
例題1求集合A與B的并集
、 A={6,8,10,12} B={3,6,9,12}
、 A={x|-1≤x≤2} B={x|0≤x≤3}
。ㄟ^(guò)度)問(wèn)題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問(wèn)號部分)還應是我們所關(guān)心的,我們稱(chēng)其為集合A與B的交集。
2、交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。
記作:A∩B 讀作:“A交B”
即: A∩B={x|∈A,且x∈B}
交集的Venn圖表示
說(shuō)明:兩個(gè)集合求交集,結果還是一個(gè)集合,是由集合A與B的公共元素組成的集合。
例題2求集合A與B的交集
、 A={6,8,10,12} B={3,6,9,12}
、 A={x|-1≤x≤2} B={x|0≤x≤3}
拓展:求下列各圖中集合A與B的并集與交集(用彩筆圖出)
說(shuō)明:當兩個(gè)集合沒(méi)有公共元素時(shí),兩個(gè)集合的交集是空集,而不能說(shuō)兩個(gè)集合沒(méi)有交集
3、例題講解
例3(P12例1):理解所給集合的含義,可借助venn圖分析
例4 P12例2):先“化簡(jiǎn)”所給集合,搞清楚各自所含元素后,再進(jìn)行運算。
4、 集合基本運算的一些結論:
A∩B A,A∩B B,A∩A=A,A∩ = ,A∩B=B∩A
A A∪B,B A∪B,A∪A=A,A∪ =A,A∪B=B∪A
若A∩B=A,則A B,反之也成立
若A∪B=B,則A B,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
高一數學(xué)必修一教案4
一、教材
首先談?wù)勎覍滩牡睦斫,《兩條直線(xiàn)平行與垂直的判定》是人教A版高中數學(xué)必修2第三章3.1.2的內容,本節課的內容是兩條直線(xiàn)平行與垂直的判定的推導及其應用,學(xué)生對于直線(xiàn)平行和垂直的概念已經(jīng)十分熟悉,并且在上節課學(xué)習了直線(xiàn)的傾斜角與斜率,為本節課的學(xué)習打下了基礎。
二、學(xué)情
教材是我們教學(xué)的工具,是載體。但我們的教學(xué)是要面向學(xué)生的,高中學(xué)生本身身心已經(jīng)趨于成熟,管理與教學(xué)難度較大,那么為了能夠成為一個(gè)合格的高中教師,深入了解所面對的學(xué)生可以說(shuō)是必修課。本階段的學(xué)生思維能力已經(jīng)非常成熟,能夠有自己獨立的思考,所以應該積極發(fā)揮這種優(yōu)勢,讓學(xué)生獨立思考探索。
三、教學(xué)目標
根據以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標:
(一)知識與技能
掌握兩條直線(xiàn)平行與垂直的判定,能夠根據其判定兩條直線(xiàn)的位置關(guān)系。
(二)過(guò)程與方法
在經(jīng)歷兩條直線(xiàn)平行與垂直的判定過(guò)程中,提升邏輯推理能力。
(三)情感態(tài)度價(jià)值觀(guān)
在猜想論證的過(guò)程中,體會(huì )數學(xué)的嚴謹性。
四、教學(xué)重難點(diǎn)
我認為一節好的數學(xué)課,從教學(xué)內容上說(shuō)一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節課的內容肯定是密不可分的。那么根據授課內容可以確定本節課的教學(xué)重點(diǎn)是:兩條直線(xiàn)平行與垂直的判定。本節課的教學(xué)難點(diǎn)是:兩條直線(xiàn)平行與垂直的'判定的推導。
五、教法和學(xué)法
現代教學(xué)理論認為,在教學(xué)過(guò)程中,學(xué)生是學(xué)習的主體,教師是學(xué)習的組織者、引導者,教學(xué)的一切活動(dòng)都必須以強調學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據這一教學(xué)理念,結合本節課的內容特點(diǎn)和學(xué)生的年齡特征,本節課我采用講授法、練習法、小組合作等教學(xué)方法。
六、教學(xué)過(guò)程
下面我將重點(diǎn)談?wù)勎覍虒W(xué)過(guò)程的設計。
(一)新課導入
首先是導入環(huán)節,那么我采用復習導入,回顧上節課所學(xué)的直線(xiàn)的傾斜角與斜率并順勢提問(wèn):能否通過(guò)直線(xiàn)的斜率,來(lái)判斷兩條直線(xiàn)的位置關(guān)系呢?
利用上節課所學(xué)的知識進(jìn)行導入,很好的克服學(xué)生的畏難情緒。
(二)新知探索
接下來(lái)是教學(xué)中最重要的新知探索環(huán)節,我主要采用講解法、小組合作、啟發(fā)法等。
高一數學(xué)必修一教案5
一、教學(xué)目標
1.知識與技能:
。1)通過(guò)實(shí)物操作,增強學(xué)生的直觀(guān)感知。
。2)能根據幾何結構特征對空間物體進(jìn)行分類(lèi)。
。3)會(huì )用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
。4)會(huì )表示有關(guān)于幾何體以及柱、錐、臺的分類(lèi)。
2.過(guò)程與方法:
。1)讓學(xué)生通過(guò)直觀(guān)感受空間物體,從實(shí)物中概括出柱、錐、臺、球的幾何結構特征。
。2)讓學(xué)生觀(guān)察、討論、歸納、概括所學(xué)的知識。
3.情感態(tài)度與價(jià)值觀(guān):
。1)使學(xué)生感受空間幾何體存在于現實(shí)生活周?chē),增強學(xué)生學(xué)習的積極性,同時(shí)提高學(xué)生的觀(guān)察能力。
。2)培養學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺、球的結構特征。
難點(diǎn):柱、錐、臺、球的結構特征的概括。
三、教學(xué)用具
。1)學(xué)法:觀(guān)察、思考、交流、討論、概括。
。2)實(shí)物模型、投影儀。
四、教學(xué)過(guò)程
。ㄒ唬﹦(chuàng )設情景,揭示課題
1、由六根火柴最多可搭成幾個(gè)三角形?(空間:4個(gè))
2在我們周?chē)杏胁簧儆刑厣慕ㄖ,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?
3、展示具有柱、錐、臺、球結構特征的空間物體。
問(wèn)題:請根據某種標準對以上空間物體進(jìn)行分類(lèi)。
。ǘ、研探新知
空間幾何體:多面體(面、棱、頂點(diǎn)):棱柱、棱錐、棱臺;
旋轉體(軸):圓柱、圓錐、圓臺、球。
1、棱柱的結構特征:
。1)觀(guān)察棱柱的幾何物體以及投影出棱柱的圖片,
思考:它們各自的特點(diǎn)是什么?共同特點(diǎn)是什么?
。▽W(xué)生討論)
。2)棱柱的主要結構特征(棱柱的概念):
、儆袃蓚(gè)面互相平行;
、谄溆喔髅娑际瞧叫兴倪呅;
、勖肯噜弮缮纤倪呅蔚墓策吇ハ嗥叫。
。3)棱柱的表示法及分類(lèi):
。4)相關(guān)概念:底面(底)、側面、側棱、頂點(diǎn)。
2、棱錐、棱臺的結構特征:
。1)實(shí)物模型演示,投影圖片;
。2)以類(lèi)似的方法,根據出棱錐、棱臺的結構特征,并得出相關(guān)的概念、分類(lèi)以及表示。
棱錐:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形。
棱臺:且一個(gè)平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。
3、圓柱的結構特征:
。1)實(shí)物模型演示,投影圖片——如何得到圓柱?
。2)根據圓柱的概念、相關(guān)概念及圓柱的表示。
4、圓錐、圓臺、球的結構特征:
。1)實(shí)物模型演示,投影圖片
——如何得到圓錐、圓臺、球?
。2)以類(lèi)似的方法,根據圓錐、圓臺、球的結構特征,以及相關(guān)概念和表示。
5、柱體、錐體、臺體的概念及關(guān)系:
探究:棱柱、棱錐、棱臺都是多面體,它們在結構上有哪些相同點(diǎn)和不同點(diǎn)?三者的關(guān)系如何?當底面發(fā)生變化時(shí),它們能否互相轉化?
圓柱、圓錐、圓臺呢?
6、簡(jiǎn)單組合體的結構特征:
。1)簡(jiǎn)單組合體的構成:由簡(jiǎn)單幾何體拼接或截去或挖去一部分而成。
。2)實(shí)物模型演示,投影圖片——說(shuō)出組成這些物體的幾何結構特征。
。3)列舉身邊物體,說(shuō)出它們是由哪些基本幾何體組成的。
。ㄈ┡烹y解惑,發(fā)展思維
1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說(shuō)明)
2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3、圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?
高一數學(xué)必修一教案6
一、教學(xué)目標
1.知識與技能:掌握畫(huà)三視圖的基本技能,豐富學(xué)生的空間想象力。
2.過(guò)程與方法:通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì )三視圖的作用。
3.情感態(tài)度與價(jià)值觀(guān):提高學(xué)生空間想象力,體會(huì )三視圖的作用。
二、教學(xué)重點(diǎn):畫(huà)出簡(jiǎn)單幾何體、簡(jiǎn)單組合體的三視圖;
難點(diǎn):識別三視圖所表示的空間幾何體。
三、學(xué)法指導:
觀(guān)察、動(dòng)手實(shí)踐、討論、類(lèi)比。
四、教學(xué)過(guò)程
。ㄒ唬﹦(chuàng )設情景,揭開(kāi)課題
展示廬山的風(fēng)景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀(guān)看物體。
。ǘ┲v授新課
1、中心投影與平行投影:
中心投影:光由一點(diǎn)向外散射形成的投影;
平行投影:在一束平行光線(xiàn)照射下形成的投影。
正投影:在平行投影中,投影線(xiàn)正對著(zhù)投影面。
2、三視圖:
正視圖:光線(xiàn)從幾何體的前面向后面正投影,得到的投影圖;
側視圖:光線(xiàn)從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線(xiàn)從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統稱(chēng)為幾何體的三視圖。
三視圖的畫(huà)法規則:長(cháng)對正,高平齊,寬相等。
長(cháng)對正:正視圖與俯視圖的長(cháng)相等,且相互對正;
高平齊:正視圖與側視圖的高度相等,且相互對齊;
寬相等:俯視圖與側視圖的寬度相等。
3、畫(huà)長(cháng)方體的三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀(guān)察到有幾何體的正投影圖,它們都是平面圖形。
長(cháng)方體的三視圖都是長(cháng)方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長(cháng)相等。
4、畫(huà)圓柱、圓錐的三視圖:
5、探究:畫(huà)出底面是正方形,側面是全等的三角形的棱錐的三視圖。
高一數學(xué)必修一教案7
教學(xué)目標與解析
1、教學(xué)目標
(1)理解函數的概念;
(2)了解區間的概念;
2、目標解析
(1)理解函數的概念就是指能用集合與對應的語(yǔ)言刻畫(huà)函數,體會(huì )對應關(guān)系在刻畫(huà)函數概念中的作用;
(2)了解區間的概念就是指能夠體會(huì )用區間表示數集的意義和作用;
問(wèn)題診斷分析在本節課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是函數的概念及符號的理解,產(chǎn)生這一問(wèn)題的原因是:函數本身就是一個(gè)抽象的概念,對學(xué)生來(lái)說(shuō)一個(gè)難點(diǎn)。要解決這一問(wèn)題,就要在通過(guò)從實(shí)際問(wèn)題中抽象概況函數的概念,培養學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉化為具體。
教學(xué)過(guò)程
問(wèn)題1:一枚炮彈發(fā)射后,經(jīng)過(guò)26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時(shí)間變量t之間的對應關(guān)系是否為函數?若是,其自變量是什么?
設計意圖:通過(guò)以上問(wèn)題,讓學(xué)生正確理解讓學(xué)生體會(huì )用解析式或圖象刻畫(huà)兩個(gè)變量之間的依賴(lài)關(guān)系,從問(wèn)題的實(shí)際意義可知,在t的變化范圍內任給一個(gè)t,按照給定的對應關(guān)系,都有的一個(gè)高度h與之對應。
問(wèn)題2:分析教科書(shū)中的實(shí)例(2),引導學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個(gè)臭氧層空洞面積S與之相對應。
問(wèn)題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數和時(shí)間的關(guān)系。
設計意圖:通過(guò)這些問(wèn)題,讓學(xué)生理解得到函數的定義,培養學(xué)生的歸納、概況的能力。
問(wèn)題4:上述三個(gè)實(shí)例中變量之間的關(guān)系都是函數,那么從集合與對應的觀(guān)點(diǎn)分析,函數還可以怎樣定義?
4.1在一個(gè)函數中,自變量x和函數值y的變化范圍都是集合,這兩個(gè)集合分別叫什么名稱(chēng)?
4.2在從集合A到集合B的一個(gè)函數f:A→B中,集合A是函數的定義域,集合B是函數的值域嗎?怎樣理解f(x)=1,x∈R?
4.3一個(gè)函數由哪幾個(gè)部分組成?如果給定函數的定義域和對應關(guān)系,那么函數的值域確定嗎?兩個(gè)函數相等的條件是什么?
高一數學(xué)必修一教案8
一、說(shuō)課內容:
蘇教版高一年級數學(xué)下冊第六章第一節的二次函數的概念及相關(guān)習題
二、教材分析:
1、教材的地位和作用
這節課是在學(xué)生已經(jīng)學(xué)習了一次函數、正比例函數、反比例函數的基礎上,來(lái)學(xué)習二次函數的概念。二次函數是初中階段研究的最后一個(gè)具體的函數,也是最重要的,在歷年來(lái)的中考題中占有較大比例。同時(shí),二次函數和以前學(xué)過(guò)的一元二次方程、一元二次不等式有著(zhù)密切的聯(lián)系。進(jìn)一步學(xué)習二次函數將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數形結合”的重要思想。而本節課的二次函數的概念是學(xué)習二次函數的基礎,是為后來(lái)學(xué)習二次函數的圖象做鋪墊。所以這節課在整個(gè)教材中具有承上啟下的重要作用。
2、教學(xué)目標和要求:
(1)知識與技能:使學(xué)生理解二次函數的概念,掌握根據實(shí)際問(wèn)題列出二次函數關(guān)系式的方法,并了解如何根據實(shí)際問(wèn)題確定自變量的取值范圍。
(2)過(guò)程與方法:復習舊知,通過(guò)實(shí)際問(wèn)題的引入,經(jīng)歷二次函數概念的探索過(guò)程,提高學(xué)生解決問(wèn)題的能力.
(3)情感、態(tài)度與價(jià)值觀(guān):通過(guò)觀(guān)察、操作、交流歸納等數學(xué)活動(dòng)加深對二次函數概念的理解,發(fā)展學(xué)生的數學(xué)思維,增強學(xué)好數學(xué)的愿望與信心.
3、教學(xué)重點(diǎn):對二次函數概念的理解。
4、教學(xué)難點(diǎn):由實(shí)際問(wèn)題確定函數解析式和確定自變量的取值范圍。
三、教法學(xué)法設計:
1、從創(chuàng )設情境入手,通過(guò)知識再現,孕伏教學(xué)過(guò)程
2、從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢教學(xué)過(guò)程
3、利用探索、研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程
四、教學(xué)過(guò)程:
(一)復習提問(wèn)
1.什么叫函數?我們之前學(xué)過(guò)了那些函數?
(一次函數,正比例函數,反比例函數)
2.它們的形式是怎樣的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函數(y=kx+b)的自變量是什么?函數是什么?常量是什么?為什么要有k≠0的條件? k值對函數性質(zhì)有什么影響?
設計意圖復習這些問(wèn)題是為了幫助學(xué)生弄清自變量、函數、常量等概念,加深對函數定義的理解.強調k≠0的條件,以備與二次函數中的a進(jìn)行比較.
(二)引入新課
函數是研究?jì)蓚(gè)變量在某變化過(guò)程中的相互關(guān)系,我們已學(xué)過(guò)正比例函數,反比例函數和一次函數?聪旅嫒齻(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)
例1、(1)圓的半徑是r(cm)時(shí),面積s (cm)與半徑之間的關(guān)系是什么?
解:s=πr(r>0)
例2、用周長(cháng)為20m的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積y(m)與矩形一邊長(cháng)x(m)之間的關(guān)系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、設人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲蓄轉存。如果存款額是100元,那么請問(wèn)兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教師提問(wèn):以上三個(gè)例子所列出的函數與一次函數有何相同點(diǎn)與不同點(diǎn)?
設計意圖通過(guò)具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀(guān)察,思考,歸納出二次函數與一次函數的聯(lián)系:
(1)函數解析式均為整式(這表明這種函數與一次函數有共同的特征)。
(2)自變量的最高次數是2(這與一次函數不同)。
(三)講解新課
以上函數不同于我們所學(xué)過(guò)的一次函數,正比例函數,反比例函數,我們就把這種函數稱(chēng)為二次函數。
二次函數的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數) 的函數叫做二次函數。
鞏固對二次函數概念的理解:
1、強調“形如”,即由形來(lái)定義函數名稱(chēng)。二次函數即y 是關(guān)于x的二次多項式(關(guān)于的x代數式一定要是整式)。
2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數。但在實(shí)際問(wèn)題中,自變量的取值范圍是使實(shí)際問(wèn)題有意義的值。(如例1中要求r>0)
3、為什么二次函數定義中要求a≠0 ?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)
4、在例3中,二次函數y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數的特殊形式,而y=ax2+bx+c是二次函數的一般形式.
設計意圖這里強調對二次函數概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來(lái)的判斷二次函數做好鋪墊。
判斷:下列函數中哪些是二次函數?哪些不是二次函數?若是二次函數,指出a、b、c.
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數)
設計意圖理論學(xué)習完二次函數的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數是二次函數,將理論知識應用到實(shí)踐操作中。
五、教學(xué)設計思考
以實(shí)現教學(xué)目標為前提
以現代教育理論為依據
以現代信息技術(shù)為手段
貫穿一個(gè)原則——以學(xué)生為主體的原則
突出一個(gè)特色——充分鼓勵表?yè)P的特色
滲透一個(gè)意識——應用數學(xué)的意識
高一數學(xué)必修一教案9
教學(xué)目標
1.了解映射的概念,象與原象的概念,和一一映射的概念.
。1)明確映射是特殊的對應即由集合 ,集合 和對應法則f三者構成的一個(gè)整體,知道映射的特殊之處在于必須是多對一和一對一的對應;
。2)能準確使用數學(xué)符號表示映射, 把握映射與一一映射的區別;
。3)會(huì )求給定映射的指定元素的象與原象,了解求象與原象的方法.
2.在概念形成過(guò)程中,培養學(xué)生的觀(guān)察,比較和歸納的能力.
3.通過(guò)映射概念的學(xué)習,逐步提高學(xué)生對知識的探究能力.
教材分析
。1)知識結構
映射是一種特殊的對應,一一映射又是一種特殊的映射,而且函數也是特殊的映射,它們之間的關(guān)系可以通過(guò)下圖表示出來(lái),如圖:
由此我們可從集合的包含關(guān)系中幫助我們把握相關(guān)概念間的區別與聯(lián)系.
。2)重點(diǎn),難點(diǎn)分析
本節的教學(xué)重點(diǎn)和難點(diǎn)是映射和一一映射概念的形成與認識.
、儆成涞母拍钍潜容^抽象的概念,它是在初中所學(xué)對應的基礎上發(fā)展而來(lái).教學(xué)中應特別強調對應集合 中的唯一這點(diǎn)要求的理解;
映射是學(xué)生在初中所學(xué)的對應的基礎上學(xué)習的,對應本身就是由三部分構成的整體,包括集 合A和集合B及對應法則f,由于法則的不同,對應可分為一對一,多對一,一對多和多對多. 其中只有一對一和多對一的能構成映射,由此可以看到映射必是“對B中之唯一”,而只要是對應就必須保證讓A中之任一與B中元素相對應,所以滿(mǎn)足一對一和多對一的對應就能體現出“任一對唯一”.
、诙灰挥成溆衷谟成涞幕A上增加新的要求,決定了它在學(xué)習中是比較困難的.
教法建議
牐牐1)在映射概念引入時(shí),可先從學(xué)生熟悉的對應入手, 選擇一些具體的生活例子,然后再舉一些數學(xué)例子,分為一對多、多對一、多對一、一對一四種情況,讓學(xué)生認真觀(guān)察,比較,再引導學(xué)生發(fā)現其中一對一和多對一的對應是映射,逐步歸納概括出映射的基本特征,讓學(xué)生的認識從感性認識到理性認識.
。2)在剛開(kāi)始學(xué)習映射時(shí),為了能讓學(xué)生看清映射的構成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語(yǔ)言描述,這樣的表示方法讓學(xué)生可以比較直觀(guān)的認識映射,而后再選擇用抽象的數學(xué)符號表示映射,比如:xx
這種表示方法比較簡(jiǎn)明,抽象,且能看到三者之間的關(guān)系.除此之外,映射的一般表示方法為 ,從這個(gè)符號中也能看到映射是由三部分構成的整體,這對后面認識函數是三件事構成的整體是非常有幫助的.
。3)對于學(xué)生層次較高的學(xué)?梢栽诮o出定義后讓學(xué)生根據自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學(xué)生從中發(fā)現映射的特點(diǎn),并用自己的語(yǔ)言描述出來(lái),最后教師加以概括,再從中引出一一映射概念;對于學(xué)生層次較低的學(xué)校,則可以由教師給出一些例子讓學(xué)生觀(guān)察,教師引導學(xué)生發(fā)現映射的特點(diǎn),一起概括.最后再讓學(xué)生舉例,并逐步增加要求向一一映射靠攏, 引出一一映射概念.
。4)關(guān)于求象和原象的問(wèn)題,應在計算的過(guò)程中總結方法,特別是求原象的方法是解方程或方程組,還可以通過(guò)方程組解的不同情況(有唯一解,無(wú)解或有無(wú)數解)加深對映射的認識.
。5)在教學(xué)方法上可以采用啟發(fā),討論的形式,讓學(xué)生在實(shí)例中去觀(guān)察,比較,啟發(fā)學(xué)生尋找共性,共同討論映射的特點(diǎn),共同舉例,計算,最后進(jìn)行小結,教師要起到點(diǎn)撥和深化的作用.
高一數學(xué)必修一教案10
學(xué)習引導
一、自主學(xué)習
1. 閱讀課本 練習止.
2. 回答問(wèn)題
(1)課本內容分成幾個(gè)層次?每個(gè)層次的中心內容是什么?
(2)層次間的聯(lián)系是什么?
(3)對數函數的定義是什么?
(4)對數函數與指數函數有什么關(guān)系?
3. 完成 練習
4. 小結.
二、方法指導
1. 在學(xué)習對數函數時(shí),同學(xué)們應從熟悉的指數問(wèn)題出發(fā),通過(guò)對指數函數的認識逐步轉化為對對數函數的認識,而且畫(huà)對數函數圖象時(shí),既要考慮到對底數的分類(lèi)討論而且對每一類(lèi)問(wèn)題也可以多選幾個(gè)不同的底,畫(huà)在同一個(gè)坐標系內,便于觀(guān)察圖象的特征,找出共性,歸納性質(zhì).
2. 本節課的主線(xiàn)是對數函數是指數函數的反函數,所有的問(wèn)題都應圍繞著(zhù)這條主線(xiàn)展開(kāi).同學(xué)們在學(xué)習時(shí)應該把兩個(gè)函數進(jìn)行類(lèi)比,通過(guò)互為反函數的兩個(gè)函數的關(guān)系由已知函數研究未知函數的性質(zhì)
思考引導
一、提問(wèn)題
1. 對數函數的自變量和函數分別在指數函數中是什么?
2.兩個(gè)函數如果互為反函數,則他們的值域,定義域有什么關(guān)系?
3.是否所有的函數都有反函數?試舉例說(shuō)明.
二、變題目
1. 試求下列函數的反函數:
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域為 .
總結引導
1.對數函數的有關(guān)概念
(1)把函數 叫做對數函數, 叫做對數函數的底數;
(2)以10為底數的對數函數 為常用對數函數;
(3)以無(wú)理數 為底數的對數函數 為自然對數函數.
2. 反函數的概念
在指數函數 中, 是自變量, 是 的函數,其定義域是 ,值域是 ;在對數函數 中, 是自變量, 是 的函數,其定義域是 ,值域是 ,像這樣的兩個(gè)函數叫做互為反函數.
3. 與對數函數有關(guān)的定義域的求法:
4. 舉例說(shuō)明如何求反函數.
拓展引導
一、課外作業(yè): 習題3-5 A組 1,2,3, B組1,
二、課外思考:
1. 求定義域: .
2. 求使函數 的函數值恒為負值的 的取值范圍.
【高一數學(xué)必修一教案】相關(guān)文章:
高一數學(xué)必修3映射教案03-22
高一語(yǔ)文必修一《雨巷》教案12-04
高一必修一作文10-27
高一必修一離騷原文06-29
高一必修英語(yǔ)作文10-26
《登高》優(yōu)質(zhì)課教案(人教版高一必修三)12-06
高一語(yǔ)文必修《古希臘的石頭》教案12-29
高一牛津英語(yǔ)必修一作文12-24