97骚碰,毛片大片免费看,亚洲第一天堂,99re思思,色好看在线视频播放,久久成人免费大片,国产又爽又色在线观看

歡迎來(lái)到瑞文網(wǎng)!

初中數學(xué)學(xué)習方法指導與總結

學(xué)習總結 時(shí)間:2017-11-11 我要投稿
【m.uydoc.com - 學(xué)習總結】

  數學(xué)是研究現實(shí)世界的空間形式和數量關(guān)系的一門(mén)科學(xué)。它的內容、思想和方法已廣泛滲人自然科學(xué)和社會(huì )科學(xué),成為現代文化的重要組成部分。學(xué)好數學(xué)對于我們適應生活,參加生產(chǎn)、進(jìn)一步學(xué)習物理、化學(xué)、計算機等其他學(xué)科的知識具有重要的意義。由于數學(xué)學(xué)科具有高度的抽象性、嚴密的邏輯性,在學(xué)習過(guò)程中容易使人產(chǎn)生枯燥、乏味、畏難等消極情緒,影響了對數學(xué)的學(xué)習和數學(xué)成績(jì)的提高。其實(shí)數學(xué)的學(xué)習是有一定方法和規律的,只要掌握合理的學(xué)習方法,正確認識數學(xué)學(xué)習和發(fā)展的規律,那么每一個(gè)同學(xué)都能樹(shù)立起學(xué)習的信心,并培養起濃厚的學(xué)習興趣,進(jìn)而為數學(xué)成績(jì)的提高和數學(xué)能力的發(fā)展打下良好的基礎。

  一、學(xué)會(huì )學(xué)習

  課內學(xué)習是中學(xué)生學(xué)好各門(mén)功課的中心環(huán)節。學(xué)生最寶貴的時(shí)間都在課堂中度過(guò),并且在老師的指導下,將人類(lèi)經(jīng)過(guò)幾千年積累下來(lái)的大量知識和經(jīng)驗轉化為自己的知識,課內學(xué)習是學(xué)好數學(xué)的關(guān)鍵,它主要包括三個(gè)環(huán)節:(1)課前認真準備;(2)課中積極思考;(3)課后力求發(fā)展。

  (一)課前認真準備。

  課前準備包括復習舊課和預習新課,復習舊課應明確課本中必須掌握的知識點(diǎn)和能力點(diǎn),看看哪些要背下來(lái),哪些要理解、哪些要應用,做到胸中有數。平時(shí)掌握較好的打個(gè)“照面”,平時(shí)學(xué)習中的疑難點(diǎn)以及學(xué)習新課要用到的知識要重點(diǎn)突破,為學(xué)習新知掃除障礙,打開(kāi)通道,使自己信心百倍地進(jìn)入學(xué)習狀態(tài)。預習新課應明確預習任務(wù),了解新課內容,找出疑難和重點(diǎn)部分以及主要概念、定理、例題解法等;適當作筆記,記下會(huì )與不會(huì )部分,帶著(zhù)問(wèn)題去聽(tīng)課,嘗試做新課后面的練習題,鍛煉自己獨立獲取知識的自學(xué)能力和探索能力。江蘇洋思中學(xué)由一所鄉鎮普通學(xué)校一躍成為全國名校,學(xué)生成績(jì)明顯提高,其成功之處就是充分發(fā)揮了預習的作用。我們每一名同學(xué)要始終把預習作為學(xué)好功課的重要環(huán)節來(lái)對待,持之以恒,養成先預習后聽(tīng)課,先復習后作業(yè)的良好學(xué)習習慣。

  (二)課中積極思考。

  我國著(zhù)名教育家嚴濟慈說(shuō):“聽(tīng)課,這是學(xué)生系統學(xué)習知識的基本方法。要想學(xué)得好,就要會(huì )聽(tīng)課!蹦瘛@是聽(tīng)好課最基本最重要的因素。因為凝神是捕捉知識信息的原動(dòng)力,凝神能使我們深思熟慮,凝神能激活人們的聰明才智。思索——學(xué)起于思,思源于疑。在預習中可能碰到不少疑難,當老師講到這些疑難時(shí),要邊聽(tīng)邊思考,聽(tīng)老師怎樣帶領(lǐng)我們渡過(guò)難關(guān),想老師為什么這樣解答或證明,聽(tīng)同學(xué)回答老師提問(wèn)的獨特見(jiàn)解或新穎解題思路。思考是接受知識、內化知識最強有力的保證。質(zhì)疑——“提出一個(gè)問(wèn)題遠比解決一個(gè)問(wèn)題重要”。這是物理學(xué)家愛(ài)因斯坦的一句名言。在通過(guò)聽(tīng)講解決預習中的疑難的同時(shí),又會(huì )產(chǎn)生新的疑難,同學(xué)們要善于質(zhì)疑問(wèn)難,選擇合適的時(shí)機提出問(wèn)題。當堂提問(wèn)既可以趁“打鐵,得到及時(shí)解答,又可以昭示其他同學(xué),引起思考,共同討論,集思廣益,達成共識。動(dòng)筆一“不動(dòng)筆墨不讀書(shū)”,這是徐特立老人的治學(xué)經(jīng)驗。勤寫(xiě)能使我們經(jīng)常處在積極的思維之中,多練能避免出現眼高手低的錯誤,動(dòng)筆能使我們更加準確和完美。

  (三)課后力求發(fā)展。

  學(xué)習是一個(gè)系統過(guò)程,既有課前的預習準備,課上的聽(tīng)講演練,還有課后的延伸和拓展,課上時(shí)間是有限的,解決的問(wèn)題和學(xué)會(huì )的知識也是有限的,課后為我們的成長(cháng)和發(fā)展提供了廣闊的空間。課后要加強記憶,擴大積累,系統小結,形成網(wǎng)絡(luò ),將學(xué)過(guò)的知識在頭腦中“消化、簡(jiǎn)化、序化”,嵌人腦中已貯存的知識系統中,最后達到使知識“自由出入”,隨時(shí)調遣,靈活運用的目標。

  二、學(xué)會(huì )審題

  所謂學(xué)會(huì )審題,就是要求解題前一定要通讀題目,弄清題意。首先弄清題目的性質(zhì)及其類(lèi)型,搞淸已知條件是什么,要求的是什么,由已知求未知已經(jīng)具備了什么條件,還需要什么條件,這些條件怎樣來(lái)找。然后根據有關(guān)的概念、定律、公式、公理、定理、法則來(lái)尋找所需要的條件,并確定正確而簡(jiǎn)捷的解題步驟,特別是對關(guān)鍵性的字句要認真推敲、耐心揣摩。盡管一個(gè)題目其內容的呈現方式多樣,有陳述式、疑問(wèn)式、圖象式、圖表式等,但是題目中的條件一般來(lái)說(shuō)是以三種方式出現的:一是題目中給出的具體數值;二是題目中給出的不是具體數值,而是敘述了一句話(huà),如圖形與圖形之間的關(guān)系,一個(gè)量和另一個(gè)量之間的關(guān)系等;三是隱含條件,如字母的取值范圍,邊的關(guān)系,角的關(guān)系,某種變化中存在的規律等;在解題過(guò)程中不僅要認真審題,弄清問(wèn)題的已知和結論,還要學(xué)會(huì )挖掘隱含條件。當找不到解題思路時(shí),要看一看是不是用上了所有的已知條件,由已知可挖掘出哪些隱含條件。如果平時(shí)注意養成良好的審題習慣和嚴謹的科學(xué)態(tài)度,做到“審”有依據,“解”有方向,那么每一個(gè)同學(xué)的解題、論證能力就會(huì )大大增強。

  常用的審題方法有下列幾種:

  (一)仔細讀題,抓關(guān)鍵詞句、搜索有用信息。如大量的應用題不像純數學(xué)習題那樣簡(jiǎn)短,而需更多的文字表述,那么審題時(shí),就要“去粗存精”,把具有或代表一定數學(xué)意義或數學(xué)關(guān)系的詞句挑選出來(lái),這是解決應用問(wèn)題的關(guān)鍵。

  (二)逆向審題,抓住使結論成立的條件,執果索因。一些幾何證明問(wèn)題,難以直接入手證明,可采取逆向審題的方法,由結論出發(fā),尋找使結論成立的條件,打通各種關(guān)礙,最后由條件出發(fā),寫(xiě)出證明過(guò)程。

  (三)數形結合、語(yǔ)言互譯、辨明數學(xué)關(guān)系。大量的數學(xué)應用問(wèn)題,借助于圖形分析其數量關(guān)系,這就需要把文字語(yǔ)言譯成符號語(yǔ)言;大量的幾何證明問(wèn)題需要把文字語(yǔ)言,結合圖形譯成符號語(yǔ)言才能完成證明過(guò)程;另一方面,有些應用題是以圖象或圖表的形式給出的,這時(shí)就要認真觀(guān)察分析,把圖表或圖象語(yǔ)言譯成符號語(yǔ)言或一般文字敘述來(lái)解決。各種語(yǔ)言的互譯能夠增強對問(wèn)題的透視,進(jìn)一步辨明數學(xué)關(guān)系,這對打開(kāi)解決問(wèn)題思路具有重要的意義。

  三、學(xué)會(huì )類(lèi)比

  俄國教育家烏申斯基說(shuō)過(guò):“比較是一切理解和思維的基礎。我們正是通過(guò)比較來(lái)了解世界上的一切的!边@充分說(shuō)明了比較在認識和學(xué)習過(guò)程中的重要作用。數學(xué)中的類(lèi)比法是最常用的比較方法,也是重要的學(xué)習方法。類(lèi)比的作用主要體現在兩個(gè)方面:

  (1)通過(guò)兩類(lèi)具有相同或相似屬性的問(wèn)題之間的對比,根據一類(lèi)問(wèn)題的某些已知特征或處理方法探索另一類(lèi)問(wèn)題的相應特征或相應處理方法。

  (2)通過(guò)兩類(lèi)相關(guān)問(wèn)題之間的對比,發(fā)現他們的共性與個(gè)性,弄清差異,形成規律性認識。在學(xué)習過(guò)程中有目的地把相同或相似的數學(xué)概念、定義、性質(zhì)、公式、定理、法則進(jìn)行比較,一方面突出某些概念和規律的共性,加深對問(wèn)題的理解記憶,并能由此及彼,由例及類(lèi),觸類(lèi)旁通,從而獲得規律性的認識。另一方面,突出某些概念和規律的個(gè)性,掌握概念和規律的實(shí)質(zhì),把握概念的內涵和外延,消除頭腦中存在的錯誤或模糊認識。例如,學(xué)習《一元一次不等式》一部分內容時(shí),可同《一元一次方程》一部分內容就概念、性質(zhì)、解題步驟、解(解集)的情況及解(解集)的表示等方面進(jìn)行類(lèi)比。

  學(xué)習公式可從取值、運算順序,運算結果及公式表示的意義等方面進(jìn)行類(lèi)比,教材中按章節(或單元)劃分,可類(lèi)比學(xué)習的地方有二十多處,在此不再一一贅述。

  學(xué)習過(guò)程是個(gè)體主動(dòng)認識和發(fā)展的過(guò)程,利用類(lèi)比的方法,可使我們已有的經(jīng)驗和知識進(jìn)行遷移,運用已有的知識和已掌握的方法探索處理新問(wèn)題的途徑,有利于形成自覺(jué)探索、自主解決問(wèn)題的良好學(xué)習習慣,這些習慣和方法的形成,對于我們未來(lái)的發(fā)展也是終生獲益的。

  例如,可類(lèi)比一元一次方程的解法,探索一元一次不等式的解法;類(lèi)比整式的加減乘除運算,探索二次根式的加減乘除運算;類(lèi)比分數的基本性質(zhì)及應用,探索分式的基本性質(zhì)及應用。此外,還可以通過(guò)類(lèi)比的方法對數學(xué)教材中的題型歸類(lèi),既可以把習題由多變少,從而減輕學(xué)習負擔,又能鍛煉和提高自己的思維能力,可謂一舉兩得。

  四、學(xué)會(huì )轉化

  數學(xué)思想是人們對數學(xué)知識和數學(xué)方法的理性認識,是對數學(xué)知識,數學(xué)方法的高度抽象和概括。其中轉化思想就是將一種研究對象在一定條件下轉化為另一種研究對象的數學(xué)思想方法。通常有“未知”向“已知”的轉化,“復雜”向“簡(jiǎn)單”的轉化,“實(shí)際問(wèn)題”向“數學(xué)模型”的轉化,“一般”向“特殊”的轉化等。轉化思想幾乎貫穿整個(gè)初中數學(xué)學(xué)習的全過(guò)程,是數學(xué)中的常規思想和基本方法,在數學(xué)學(xué)習過(guò)程中,根據已有的知識和經(jīng)驗,通過(guò)觀(guān)察、聯(lián)想、變換等手段,把要解決的問(wèn)題轉化為已經(jīng)解決或容易解決的問(wèn)題,逐步形成自覺(jué)的轉化意識,對解決問(wèn)題能力的提高和良好思維品質(zhì)的培養具有重要的作用。

  (一)化“未知”為“已知”。數學(xué)這門(mén)學(xué)科具有系統性、層次性強的特點(diǎn),絕大多數新知都是由它的先行舊知延伸和發(fā)展而來(lái)的,把新知識、新問(wèn)題化歸為舊知識、舊問(wèn)題來(lái)解決,不但找到了解決問(wèn)題的途徑而且鞏固發(fā)展了舊知識,能順利實(shí)現“新知”向“舊知”的轉化,“未知”向“已知”的轉化。初中數學(xué)方程和方程組的解法,就是通過(guò)消元、降次實(shí)現“未知”向“已知”轉化的。

  (二)化復雜為簡(jiǎn)單。對于復雜抽象的數學(xué)問(wèn)題,應用傳統的思維方式問(wèn)題容易受阻,或者解決起來(lái)十分麻煩,這就需要及時(shí)調整思維的方向,沖出常規思維的框框。靈活選取角度尋找解決問(wèn)題的途徑,把問(wèn)題轉化為新的可以解決的問(wèn)題,達到化復雜為簡(jiǎn)單的目的。

  例如:m為何值時(shí),方程x+(m-5)x+1-m=0的一個(gè)根大于3,另一個(gè)根小于3。

  若設x-3=t,則x=t+3,把x=t+3代入原方程得

  t+(m+1)t+(2m-5)=0,這樣把“一根大于3,另一根小于3”的情況就轉化為“一根大于0,另一根小于0”的情況,由t1t2<0即2m-5<0,解得m<5/2

  例如:從12點(diǎn)起,在什么時(shí)間,時(shí)鐘的分針和時(shí)針第一次重疊。

  這個(gè)問(wèn)題從表盤(pán)的分格上或兩針的夾角上考慮,是比較復雜的,如果把兩針看士?jì)蓚(gè)人,那么問(wèn)題就轉化為在環(huán)形跑道上的追及問(wèn)題。

  (三)化實(shí)際問(wèn)題為數學(xué)模型。利用化歸方法構造數學(xué)模型,解決學(xué)習、生產(chǎn)、生活中的實(shí)際問(wèn)題,是學(xué)生必須具備的數學(xué)素養,也是培養學(xué)生創(chuàng )造性思維能力的重要途徑。例如,在《正多邊形和圓》一部分內容中有這樣一個(gè)實(shí)際問(wèn)題:“用美術(shù)瓷磚鋪地面,’,解決這個(gè)問(wèn)題,應舍棄材料的圖案和質(zhì)量,從數學(xué)的角度來(lái)考慮,就是選擇什么形狀的瓷磚鋪地面?梢越柚鷮(shí)際圖形,結合已學(xué)過(guò)的正多邊形的有關(guān)知識尋求合理答案,經(jīng)過(guò)觀(guān)察、對比可以發(fā)現,應選取正三角形、正四邊形、正六邊形的瓷磚鋪地面;瘹w這個(gè)數學(xué)問(wèn)題的實(shí)質(zhì)是選取圍繞角的頂點(diǎn)能拼成360°角的正多邊形。再如2000年中考23題。解答此題,就需要根據實(shí)際問(wèn)題提供的數據,建立數學(xué)模型,轉化成數學(xué)問(wèn)題中的數量關(guān)系,根據拋物線(xiàn)的有關(guān)數學(xué)知識進(jìn)行求解。

  此外,轉化的方式還有化抽象為具體,化形為數,化數為形,化一般為特殊等,不再贅述。

  五、學(xué)會(huì )分析

  在《大綱》和教育部《中考命題意見(jiàn)》中都強調在培養和考查學(xué)生“三大能力”的同時(shí),著(zhù)重培養和考查學(xué)生運用數學(xué)知識分析和解決實(shí)際問(wèn)題的能力。在數學(xué)學(xué)習過(guò)程中,每一名學(xué)生都想知道,碰到一道稍復雜的題目,應如何著(zhù)手思考,如何在較短的時(shí)間內找到正確的解題途徑,并按照一定的邏輯關(guān)系將解題(證明)過(guò)程寫(xiě)出來(lái)。實(shí)踐證明,學(xué)生們分析問(wèn)題、解決問(wèn)題的能力,在很大程度上依賴(lài)于是否學(xué)會(huì )分析。

  分析就是把研究對象分解為它的各個(gè)組成部分、方面、因素、層次,然后分別加以研究,從而認識事物的基礎或本質(zhì)的一種思維方法。具體地說(shuō),分析法就是從數學(xué)題的結論出發(fā),利用學(xué)過(guò)的公式、公理、定理或法則去推想使結論成立的條件,一旦這些條件具備,結論就成立。譬如要證明命題甲成立,就去尋找使命題甲成立的條件,若命題甲成立的條件可由已知條件直接推得,那么問(wèn)題就解決了。如果所需的條件有一個(gè)或幾個(gè)不在已知中,問(wèn)題沒(méi)有解決,可繼續往下想,看已知中缺少的條件是否可直接由已知中具備的條件推出,如果可以,那么問(wèn)題得以解決,如果還是不行,那就繼續用同樣的方法追溯,直到你所需要的某個(gè)條件已能由已知條件推得為止。簡(jiǎn)言之,分析法就是“執果索因”。

熱門(mén)文章