相交線(xiàn)與平行線(xiàn)知識點(diǎn)以理論性為主,只要分清一定的相交線(xiàn)與平行線(xiàn)知識點(diǎn)就能舉一反三解出結果了。下面就隨小編一起去閱讀相交線(xiàn)與平行線(xiàn)知識點(diǎn)總結,相信能帶給大家啟發(fā)。
相交線(xiàn)與平行線(xiàn)知識點(diǎn)總結
一、目標與要求
1.理解對頂角和鄰補角的概念,能在圖形中辨認;
2.掌握對頂角相等的性質(zhì)和它的推證過(guò)程;
3.通過(guò)在圖形中辨認對頂角和鄰補角,培養學(xué)生的識圖能力。
二、重點(diǎn)
在較復雜的圖形中準確辨認對頂角和鄰補角;
兩條直線(xiàn)互相垂直的概念、性質(zhì)和畫(huà)法;
同位角、內錯角、同旁?xún)冉堑母拍钆c識別。
三、難點(diǎn)
在較復雜的圖形中準確辨認對頂角和鄰補角;
對點(diǎn)到直線(xiàn)的距離的概念的理解;
對平行線(xiàn)本質(zhì)屬性的理解,用幾何語(yǔ)言描述圖形的性質(zhì);
能區分平行線(xiàn)的性質(zhì)和判定,平行線(xiàn)的性質(zhì)與判定的混合應用。
四、知識框架
五、知識點(diǎn)、概念總結
1.鄰補角:兩條直線(xiàn)相交所構成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補角。
2.對頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長(cháng)線(xiàn),像這樣的兩個(gè)角互為對頂角。
3.對頂角和鄰補角的關(guān)系
4.垂直:兩條直線(xiàn)、兩個(gè)平面相交,或一條直線(xiàn)與一個(gè)平面相交,如果交角成直角,叫做互相垂直。
5.垂線(xiàn):兩條直線(xiàn)相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線(xiàn)。
6.垂足:如果兩直線(xiàn)的夾角為直角,那么就說(shuō)這兩條直線(xiàn)互相垂直,它們的交點(diǎn)叫做垂足。
7.垂線(xiàn)性質(zhì)
(1)在同一平面內,過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。
(2)連接直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)的所有線(xiàn)段中,垂線(xiàn)段最短。簡(jiǎn)單說(shuō)成:垂線(xiàn)段最短。
(3)點(diǎn)到直線(xiàn)的距離:直線(xiàn)外一點(diǎn)到這條直線(xiàn)的垂線(xiàn)段的長(cháng)度,叫做點(diǎn)到直線(xiàn)的距離。
8.同位角、內錯角、同旁?xún)冉牵?/p>
同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。
內錯角:∠2與∠6像這樣的一對角叫做內錯角。
同旁?xún)冉牵?ang;2與∠5像這樣的一對角叫做同旁?xún)冉恰?/p>
9.平行:在平面上兩條直線(xiàn)、空間的兩個(gè)平面或空間的一條直線(xiàn)與一平面之間沒(méi)有任何公共點(diǎn)時(shí),稱(chēng)它們平行。
10.平行線(xiàn):在同一平面內,不相交的兩條直線(xiàn)叫做平行線(xiàn)。
11.命題:判斷一件事情的語(yǔ)句叫命題。
12.真命題:正確的命題,即如果命題的題設成立,那么結論一定成立。
13.假命題:條件和結果相矛盾的命題是假命題。
14.平移:在平面內,將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡(jiǎn)稱(chēng)平移。
15.對應點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對應點(diǎn)。
16.定理與性質(zhì)
對頂角的性質(zhì):對頂角相等。
17.垂線(xiàn)的性質(zhì):
性質(zhì)1:過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。
性質(zhì)2:連接直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)的所有線(xiàn)段中,垂線(xiàn)段最短。
18.平行公理:經(jīng)過(guò)直線(xiàn)外一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)平行。
平行公理的推論:如果兩條直線(xiàn)都與第三條直線(xiàn)平行,那么這兩條直線(xiàn)也互相平行。
19.平行線(xiàn)的性質(zhì):
性質(zhì)1:兩直線(xiàn)平行,同位角相等。
性質(zhì)2:兩直線(xiàn)平行,內錯角相等。
性質(zhì)3:兩直線(xiàn)平行,同旁?xún)冉腔パa。
20.平行線(xiàn)的判定:
判定1:同位角相等,兩直線(xiàn)平行。
判定2:內錯角相等,兩直線(xiàn)平行。
判定3:同旁?xún)冉窍嗟,兩直線(xiàn)平行。
21.命題的擴展
三種命題
(1)對于兩個(gè)命題,如果一個(gè)命題的條件和結論分別是另外一個(gè)命題的結論和條件,那么這兩個(gè)命題叫做互逆命題,其中一個(gè)命題叫做原命題,另外一個(gè)命題叫做原命題的逆命題。
(2)對于兩個(gè)命題,如果一個(gè)命題的條件和結論分別是另外一個(gè)命題的條件的否定和結論的否定,那么這兩個(gè)命題叫做互否命題,其中一個(gè)命題叫做原命題,另外一個(gè)命題叫做原命題的否命題。
(3)對于兩個(gè)命題,如果一個(gè)命題的條件和結論分別是另外一個(gè)命題的結論的否定和條件的否定,那么這兩個(gè)命題叫做互為逆否命題,其中一個(gè)命題叫做原命題,另外一個(gè)命題叫做原命題的逆否命題。
四種命題的相互關(guān)系
(1)四種命題的相互關(guān)系:原命題與逆命題互逆,否命題與原命題互否,原命題與逆否命題相互逆否,逆命題與否命題相互逆否,逆命題與逆否命題互否,逆否命題與否命題互逆。
(2)四種命題的真假關(guān)系:
兩個(gè)命題互為逆否命題,它們有相同的真假性。兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系
命題之間的關(guān)系
(1)能夠判斷真假的陳述句叫做命題,正確的命題叫做真命題,錯誤的命題叫做假命題。
(2)“若p,則q”形式的命題中p叫做命題的條件,q叫做命題的結論。
(3)命題的分類(lèi):
A:原命題:一個(gè)命題的本身稱(chēng)之為原命題,如:若x>1,則f(x)=(x-1)2單調遞增。
B:逆命題:將原命題的條件和結論顛倒的新命題,如:若f(x)=(x-1)2單調遞增,則x>1.
C:否命題:將原命題的條件和結論全否定的新命題,但不改變條件和結論的順序,
如:若x小于1,則f(x)=(x-1)2不單調遞增。
D:逆否命題:將原命題的條件和結論顛倒,然后再將條件和結論全否定的新命題,
如:若f(x)=(x-1)2不單調遞增,則x小于1.
(4)命題的否定
命題的否定是只將命題的結論否定的新命題,這與否命題不同。
(5)4種命題及命題的否定的真假性關(guān)系
原命題和逆否命題等價(jià),否命題和逆命題等價(jià),命題的否定與原命題的真假性相反。
充分條件與必要條件
(1)“若p,則q”為真命題,叫做由p推出q,記作p=>q,并且說(shuō)p是q的充分條件,q是p的必要條件。
(2)“若p,則q”為假命題,叫做由p推不出q,記作p≠>q,并且說(shuō)p不是q的充分條件(或p是q的非充分條件),q不是p的必要條件(或q是p的非必要條件)。
充要條件
如果既有p=>q,又有q=>p,就記作p<=>q,并且說(shuō)p是q的充分必要條件(或q是p的充分必要條件),簡(jiǎn)稱(chēng)充要條件。