高二數學(xué)的數列知識點(diǎn)總結
在現實(shí)學(xué)習生活中,相信大家一定都接觸過(guò)知識點(diǎn)吧!知識點(diǎn)就是一些?嫉膬热,或者考試經(jīng)常出題的地方。想要一份整理好的知識點(diǎn)嗎?下面是小編幫大家整理的高二數學(xué)的數列知識點(diǎn)總結,歡迎閱讀與收藏。
高二數學(xué)的數列知識點(diǎn)總結1
數列概念
、贁盗惺且环N特殊的函數。其特殊性主要表現在其定義域和值域上。數列可以看作一個(gè)定義域為正整數集N*或其有限子集{1,2,3,…,n}的函數,其中的{1,2,3,…,n}不能省略。
、谟煤瘮档挠^(guān)點(diǎn)認識數列是重要的思想方法,一般情況下函數有三種表示方法,數列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數列和以遞推公式給出數列。
、酆瘮挡灰欢ㄓ薪馕鍪,同樣數列也并非都有通項公式。
等差數列
1.等差數列通項公式
an=a1+(n-1)d
n=1時(shí)a1=S1
n≥2時(shí)an=Sn-Sn-1
an=kn+b(k,b為常數)推導過(guò)程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b
2.等差中項
由三個(gè)數a,A,b組成的等差數列可以堪稱(chēng)最簡(jiǎn)單的等差數列。這時(shí),A叫做a與b的等差中項(arithmeticmean)。
有關(guān)系:A=(a+b)÷2
3.前n項和
倒序相加法推導前n項和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個(gè))=n(a1+an)
∴Sn=n(a1+an)÷2
等差數列的前n項和等于首末兩項的和與項數乘積的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差數列性質(zhì)
一、任意兩項am,an的關(guān)系為:
an=am+(n-m)d
它可以看作等差數列廣義的通項公式。
二、從等差數列的定義、通項公式,前n項和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N*
三、若m,n,p,q∈N*,且m+n=p+q,則有am+an=ap+aq
四、對任意的k∈N*,有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數列。
等比數列
1.等比中項
如果在a與b中間插入一個(gè)數G,使a,G,b成等比數列,那么G叫做a與b的等比中項。
有關(guān)系:
注:兩個(gè)非零同號的實(shí)數的等比中項有兩個(gè),它們互為相反數,所以G=ab是a,G,b三數成等比數列的必要不充分條件。
2.等比數列通項公式
an=a1*q’(n-1)(其中首項是a1,公比是q)
an=Sn-S(n-1)(n≥2)
前n項和
當q≠1時(shí),等比數列的前n項和的公式為
Sn=a1(1-q’n)/(1-q)=(a1-a1*q’n)/(1-q)(q≠1)
當q=1時(shí),等比數列的前n項和的公式為
Sn=na1
3.等比數列前n項和與通項的關(guān)系
an=a1=s1(n=1)
an=sn-s(n-1)(n≥2)
4.等比數列性質(zhì)
(1)若m、n、p、q∈N*,且m+n=p+q,則am·an=ap·aq;
(2)在等比數列中,依次每k項之和仍成等比數列。
(3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項:q、r、p成等比數列,則aq·ap=ar,ar則為ap,aq等比中項。
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個(gè)各項均為正數的等比數列各項取同底指數冪后構成一個(gè)等差數列;反之,以任一個(gè)正數C為底,用一個(gè)等差數列的各項做指數構造冪Can,則是等比數列。在這個(gè)意義下,我們說(shuō):一個(gè)正項等比數列與等差數列是“同構”的。
(5)等比數列前n項之和Sn=a1(1-q’n)/(1-q)
(6)任意兩項am,an的關(guān)系為an=am·q’(n-m)
(7)在等比數列中,首項a1與公比q都不為零。
注意:上述公式中a’n表示a的n次方。
高二數學(xué)的數列知識點(diǎn)總結2
1、高二數學(xué)數列的定義
按一定次序排列的一列數叫做數列,數列中的每一個(gè)數都叫做數列的項。
(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列。
(2)在數列的定義中并沒(méi)有規定數列中的數必須不同,因此,在同一數列中可以出現多個(gè)相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,…。
(4)數列的項與它的項數是不同的,數列的項是指這個(gè)數列中的某一個(gè)確定的數,是一個(gè)函數值,也就是相當于f(n),而項數是指這個(gè)數在數列中的位置序號,它是自變量的值,相當于f(n)中的n。
(5)次序對于數列來(lái)講是十分重要的,有幾個(gè)相同的數,由于它們的排列次序不同,構成的數列就不是一個(gè)相同的數列,顯然數列與數集有本質(zhì)的區別。如:2,3,4,5,6這5個(gè)數按不同的次序排列時(shí),就會(huì )得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合。
2、高二數學(xué)數列的分類(lèi)
(1)根據數列的項數多少可以對數列進(jìn)行分類(lèi),分為有窮數列和無(wú)窮數列。在寫(xiě)數列時(shí),對于有窮數列,要把末項寫(xiě)出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫(xiě)成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無(wú)窮數列。
(2)按照項與項之間的大小關(guān)系或數列的增減性可以分為以下幾類(lèi):遞增數列、遞減數列、擺動(dòng)數列、常數列。
3、高二數學(xué)數列的通項公式
數列是按一定次序排列的一列數,其內涵的本質(zhì)屬性是確定這一列數的規律,這個(gè)規律通常是用式子f(n)來(lái)表示的,
這兩個(gè)通項公式形式上雖然不同,但表示同一個(gè)數列,正像每個(gè)函數關(guān)系不都能用解析式表達出來(lái)一樣,也不是每個(gè)數列都能寫(xiě)出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是唯一的,僅僅知道一個(gè)數列前面的有限項,無(wú)其他說(shuō)明,數列是不能確定的,通項公式更非唯一。如:數列1,2,3,4,…,
由公式寫(xiě)出的后續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀(guān)察分析,真正找到數列的內在規律,由數列前幾項寫(xiě)出其通項公式,沒(méi)有通用的方法可循。
再強調對于數列通項公式的理解注意以下幾點(diǎn):
(1)數列的通項公式實(shí)際上是一個(gè)以正整數集N*或它的有限子集{1,2,…,n}為定義域的函數的表達式。
(2)如果知道了數列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個(gè)數列的.各項;同時(shí),用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話(huà),是第幾項。
(3)如所有的函數關(guān)系不一定都有解析式一樣,并不是所有的數列都有通項公式。
如2的不足近似值,精確到1,0.1,0.01,0.001,0.000 1,…所構成的數列1,1.4,1.41,1.414,1.414 2,…就沒(méi)有通項公式。
(4)有的數列的通項公式,形式上不一定是唯一的,正如舉例中的:
(5)有些數列,只給出它的前幾項,并沒(méi)有給出它的構成規律,那么僅由前面幾項歸納出的數列通項公式并不唯一。
4、高二數學(xué)數列的圖象
對于數列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關(guān)系:
序號:1 2 3 4 5 6 7
項:4 5 6 7 8 9 10
這就是說(shuō),上面可以看成是一個(gè)序號集合到另一個(gè)數的集合的映射。因此,從映射、函數的觀(guān)點(diǎn)看,數列可以看作是一個(gè)定義域為正整集N*(或它的有限子集{1,2,3,…,n})的函數,當自變量從小到大依次取值時(shí),對應的一列函數值。這里的函數是一種特殊的函數,它的自變量只能取正整數。
由于數列的項是函數值,序號是自變量,數列的通項公式也就是相應函數和解析式。
數列是一種特殊的函數,數列是可以用圖象直觀(guān)地表示的。
數列用圖象來(lái)表示,可以以序號為橫坐標,相應的項為縱坐標,描點(diǎn)畫(huà)圖來(lái)表示一個(gè)數列,在畫(huà)圖時(shí),為方便起見(jiàn),在平面直角坐標系兩條坐標軸上取的單位長(cháng)度可以不同,從數列的圖象表示可以直觀(guān)地看出數列的變化情況,但不精確。
把數列與函數比較,數列是特殊的函數,特殊在定義域是正整數集或由以1為首的有限連續正整數組成的集合,其圖象是無(wú)限個(gè)或有限個(gè)孤立的點(diǎn)。
高二數學(xué)的數列知識點(diǎn)總結3
等差數列
對于一個(gè)數列{a n },如果任意相鄰兩項之差為一個(gè)常數,那么該數列為等差數列,且稱(chēng)這一定值差為公差,記為 d ;從第一項 a 1 到第n項 a n 的總和,記為 S n 。
那么 , 通項公式為,其求法很重要,利用了“疊加原理”的思想:
將以上 n-1 個(gè)式子相加, 便會(huì )接連消去很多相關(guān)的項 ,最終等式左邊余下a n ,而右邊則余下 a1和 n-1 個(gè)d,如此便得到上述通項公式。
此外, 數列前 n 項的和,其具體推導方式較簡(jiǎn)單,可用以上類(lèi)似的疊加的方法,也可以采取迭代的方法,在此,不再復述。
值得說(shuō)明的是,也即,前n項的和Sn 除以 n 后,便得到一個(gè)以a 1 為首項,以 d /2 為公差的新數列,利用這一特點(diǎn)可以使很多涉及Sn 的數列問(wèn)題迎刃而解。
等比數列
對于一個(gè)數列 {a n },如果任意相鄰兩項之商(即二者的比)為一個(gè)常數,那么該數列為等比數列,且稱(chēng)這一定值商為公比 q ;從第一項 a 1 到第n項 a n 的總和,記為 T n 。
那么, 通項公式為(即a1 乘以q 的 (n-1)次方,其推導為“連乘原理”的思想:
a 2 = a 1 *q,
a 3 = a 2 *q,
a 4 = a 3 *q,
````````
a n = a n-1 *q,
將以上(n-1)項相乘,左右消去相應項后,左邊余下a n , 右邊余下 a1 和(n-1)個(gè)q的乘積,也即得到了所述通項公式。
此外, 當q=1時(shí) 該數列的前n項和 Tn=a1*n
當q≠1時(shí) 該數列前n 項的和 T n = a1 * ( 1- q^(n)) / (1-q).
高二數學(xué)的數列知識點(diǎn)總結4
高中數學(xué)數列知識點(diǎn)總結:等差數列公式
等差數列的通項公式為:an=a1+(n-1)d
或an=am+(n-m)d
前n項和公式為:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2
若m+n=2p則:am+an=2ap
以上n均為正整數
文字翻譯
第n項的值=首項+(項數-1)*公差
前n項的和=(首項+末項)*項數/2
公差=后項-前項
高中數學(xué)數列知識點(diǎn)總結:等比數列公式
等比數列求和公式
(1) 等比數列:a (n+1)/an=q (n∈N)。
(2) 通項公式:an=a1×q^(n-1); 推廣式:an=am×q^(n-m);
(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q為公比,n為項數)
(4)性質(zhì):
、偃 m、n、p、q∈N,且m+n=p+q,則am×an=ap×aq;
、谠诘缺葦盗兄,依次每 k項之和仍成等比數列.
、廴鬽、n、q∈N,且m+n=2q,則am×an=aq^2
(5)"G是a、b的等比中項""G^2=ab(G ≠ 0)".
(6)在等比數列中,首項a1與公比q都不為零. 注意:上述公式中an表示等比數列的第n項。
等比數列求和公式推導: Sn=a1+a2+a3+...+an(公比為q) q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1) Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^n Sn=(a1-a1*q^n)/(1-q) Sn=(a1-an*q)/(1-q) Sn=a1(1-q^n)/(1-q) Sn=k*(1-q^n)~y=k*(1-a^x)。
高二數學(xué)的數列知識點(diǎn)總結5
數列知識:數列是一種特殊的函數。其特殊性主要表現在其定義域和值域上。數列可以看作一個(gè)定義域為正整數集N*或其有限子集{1,2,3,…,n}的函數,其中的{1,2,3,…,n}不能省略。
數列
、儆煤瘮档挠^(guān)點(diǎn)認識數列是重要的思想方法,一般情況下函數有三種表示方法,數列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數列和以遞推公式給出數列。
數列的一般形式可以寫(xiě)成
a1,a2,a3,…,an,a(n+1),……
簡(jiǎn)記為{an},
項數有限的數列為“有窮數列”(finite sequence),
項數無(wú)限的數列為“無(wú)窮數列”(infinite sequence)。
數列的各項都是正數的為正項數列;
從第2項起,每一項都大于它的前一項的數列叫做遞增數列;如:1,2,3,4,5,6,7;
從第2項起,每一項都小于它的前一項的數列叫做遞減數列;如:8,7,6,5,4,3,2,1;
從第2項起,有些項大于它的前一項,有些項小于它的前一項的數列叫做擺動(dòng)數列;
各項呈周期性變化的數列叫做周期數列(如三角函數);
各項相等的數列叫做常數列(如:2,2,2,2,2,2,2,2,2)。
通項公式:數列的第N項an與項的序數n之間的關(guān)系可以用一個(gè)公式an=f(n)來(lái)表示,這個(gè)公式就叫做這個(gè)數列的通項公式(注:通項公式不唯一)。
遞推公式:如果數列{an}的第n項與它前一項或幾項的關(guān)系可以用一個(gè)式子來(lái)表示,那么這個(gè)公式叫做這個(gè)數列的遞推公式。
數列中項的總數為數列的項數。特別地,數列可以看成以正整數集N*(或它的有限子集{1,2,…,n})為定義域的函數an=f(n)。
如果可以用一個(gè)公式來(lái)表示,則它的通項公式是a(n)=f(n).
并非所有的數列都能寫(xiě)出它的通項公式。例如:π的不同近似值,根據精確的程度,可形成一個(gè)數列3,3.1,3.14,3.141,…它沒(méi)有通項公式。
數列中的項必須是數,它可以是實(shí)數,也可以是復數。
用符號{an}表示數列,只不過(guò)是“借用”集合的符號,它們之間有本質(zhì)上的區別:
1.集合中的元素是互異的,而數列中的項可以是相同的。
2.集合中的元素是無(wú)序的,而數列中的項必須按一定順序排列,也就是必須是有序的。
【高二數學(xué)的數列知識點(diǎn)總結】相關(guān)文章:
數列的知識點(diǎn)總結03-29
高二數學(xué)數列教學(xué)反思09-02
高二數學(xué)數列教學(xué)反思09-02
高考數列知識點(diǎn)總結03-31
必修五數學(xué)等差數列知識點(diǎn)總結02-18
高中數列知識點(diǎn)總結12-02