三角形內角和教學(xué)反思
三角形內角和教學(xué)反思1
《三角形的內角和》在學(xué)生學(xué)習了三角形的特征以及三角形分類(lèi)的基礎上,進(jìn)一步研究三角形三個(gè)角的關(guān)系。讓學(xué)生猜測-質(zhì)疑-驗證得出“三角形的內角和等于180°”,引導學(xué)生觀(guān)察、實(shí)驗、猜測,逐步培養學(xué)生的邏輯推理能力。
愛(ài)因斯坦說(shuō)過(guò):“問(wèn)題的提出往往比解答問(wèn)題更重要”,上課開(kāi)始,我通過(guò)觀(guān)察長(cháng)方形的內角和連接對角線(xiàn)把它分成兩個(gè)直角三角形讓學(xué)生猜測三角形的內角和是180°,然后質(zhì)疑:那是不是所有的三角形的內角和都是180°呢?這個(gè)問(wèn)題一拋出去馬上激發(fā)學(xué)生的學(xué)習
熱情。接著(zhù)就讓學(xué)生來(lái)驗證三角形的內角和。驗證過(guò)程分兩部分來(lái)進(jìn)行,先通過(guò)量一量、算一算的方法讓學(xué)生驗證各類(lèi)三角形的內角和,一是加深對三角形內角和的理解就是三個(gè)內角的`度數之和,二是讓學(xué)生在小組內通過(guò)動(dòng)手操作、記錄、觀(guān)察,驗證三角形的內角和是否為180°。之后我組織學(xué)生在全班匯報交流,沒(méi)有以小組的形式展示,給學(xué)生交流的空間太小沒(méi)有達到小組合作的真正目的。再讓學(xué)生通過(guò)拼一拼、折一折的方法來(lái)發(fā)現各類(lèi)三角形的三
個(gè)內角都可以拼成一個(gè)平角,從而得出三角形的內角和的確是180°的結論。匯報展示這個(gè)環(huán)節只是口頭敘述的形式描述驗證的結果,若先還原原圖,再展示驗證過(guò)程與結果效果更佳。
探究新知是為了應用,這節課在練習的安排上,我注意把握練習層次,共安排三個(gè)層次,由易到難,逐步加深。第一層練習是已知三角形兩個(gè)內角度數,求另一個(gè)角。練習內容的安排從知識的直接應用到間接應用,數學(xué)信息的出現從比較顯現到較為隱藏。第二層練習是判斷題,讓學(xué)生應用結論思考分析,檢驗語(yǔ)言的嚴密性。第三層是解決多種類(lèi)型三角形的內角問(wèn)題,有等邊三角形、等腰三角形、直角三角形,根據自身特點(diǎn)來(lái)解決問(wèn)題。
本節課我采用逐步設置疑問(wèn),讓學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口,積極參與知識學(xué)習的全過(guò)程,滲透多觀(guān)察、動(dòng)腦想、大膽猜、勤鉆研的研討式學(xué)習方法,培養學(xué)生學(xué)習數學(xué)的興趣,給學(xué)生提供更多的活動(dòng)機會(huì )和空間,使學(xué)生在參與的過(guò)程中得到充足的體驗和發(fā)展。
三角形內角和教學(xué)反思2
我在講“認識三角形”時(shí),“三角形內角和等于180度”這一結論學(xué)生早知曉,為什么三角形內角和會(huì )一樣?
這也正是我本節課要與學(xué)生共同研究的問(wèn)題。這時(shí)學(xué)生想說(shuō)為什么又不知怎么說(shuō),又因不知道怎么說(shuō)而感情特別激動(dòng)。處于這種狀態(tài)的學(xué)生注意力特別集中,學(xué)習興趣異常高漲,到了一觸即發(fā)的地步。于是我讓他們將課前準備好的三角形拿出來(lái)進(jìn)行研究,學(xué)生通過(guò)折一折、拼一拼、剪一剪、之后找到自己的驗證方法時(shí),他們體驗了成功,也學(xué)會(huì )了學(xué)習。在這節課中我們共同找到了幾種驗證三角形內角和是180°方法。學(xué)生們拿著(zhù)他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個(gè)過(guò)程中,滲透了他們發(fā)現的樂(lè )趣。
有的學(xué)生將三角形的三個(gè)角都撕下來(lái)拼接到一起,有的同學(xué)將三角形的三個(gè)角沿著(zhù)三角形的.中位線(xiàn)折到一起……其中有一組同學(xué)竟然用稚嫩的聲音說(shuō):可以用數學(xué)方法來(lái)證明。于是他們闡述自己借助與三角形底邊平行的線(xiàn)與三角形所形成的內錯角進(jìn)行證明的方法。
至此學(xué)生完成了感性認識到理性認識的轉化過(guò)程,充分展示了數學(xué)地思維方式和思想方法。
三角形內角和教學(xué)反思3
今天教學(xué)《三角形的內角和》,對于三角板,學(xué)生是不陌生的,所以我們從一副三角板入手,讓學(xué)生算出一副三角板的內角和是180°,于是拋出問(wèn)題,在其他三角形中三個(gè)內角的和是不是也是180°呢?學(xué)生當然會(huì )猜是。
我覺(jué)得今天孩子不僅學(xué)到了三角形的內角和,還學(xué)到了對待一個(gè)猜想就要想辦法來(lái)驗證的數學(xué)思想。當我要求孩子們來(lái)驗證的時(shí)候,有的孩子想到了量,有的孩子想到了折,這里我先讓孩子們都去量,量了以后,因為有的同學(xué)量的不精確,所以我建議更精確的驗證方法,孩子又想到了折,我又讓孩子們去折。事后想想,如果我一開(kāi)始就讓孩子們嘗試用自己喜歡的方法去驗證一下,說(shuō)不定碰撞的火花會(huì )跟激烈些。我這樣一步一步來(lái)的話(huà),就有些按部就班,沒(méi)有那種水到渠成的感覺(jué)了。
后來(lái),校長(cháng)提出,一開(kāi)始有個(gè)孩子說(shuō)到他量到175°,比較接近180°的'時(shí)候,我只是強調要精確,卻沒(méi)有很好的利用這一資源,如果我這時(shí)候讓孩子把他畫(huà)的這個(gè)三角形撕下來(lái),折一折來(lái)驗證的話(huà) ,學(xué)生的印象會(huì )更加深刻。這點(diǎn)我沒(méi)想到,看來(lái)我還不夠智慧!楊教導也提出,后面的習題三,正方形內角和是360°,而把它對折變成三角形,就變成了180°,把三角形對折還是180°,這道題我沒(méi)有深入,這是教材沒(méi)把握好!以后要注意,但是這節課上孩子的表現還是比較令我滿(mǎn)意的,比平時(shí)好!呵呵!
三角形內角和教學(xué)反思4
三角形內角和等于180,對于大多數同學(xué)來(lái)說(shuō)并不是新知識。因為在此之前同學(xué)們已經(jīng)運用過(guò)這一知識。因此,我覺(jué)得這一堂課的重點(diǎn)不是讓學(xué)生記住這一知識點(diǎn),也不是怎樣運用它去解決問(wèn)題,而是讓學(xué)生證明這一結論,即要讓學(xué)生親歷探索過(guò)程并在探索中驗證。
1、以疑激思
古人云:學(xué)起于思,思源于疑。因此,要激發(fā)學(xué)生的思維,讓學(xué)生主動(dòng)探索。學(xué)生的積極思維往往是由問(wèn)題開(kāi)始的,在解決問(wèn)題中得到發(fā)展。因此,在課一開(kāi)始,我便通過(guò)擬人化的對話(huà)情境:大三角形說(shuō)我的內角和比你大!小三角形很不服氣的說(shuō)我的內角和比你大!接著(zhù)拋出一個(gè)問(wèn)題:到底哪個(gè)三角形的內角和大呢?為什么?你能證明嗎?引起了學(xué)生的積極思考,并探索解決問(wèn)題的方法。
2、以動(dòng)啟思
在教學(xué)中,通過(guò)豐富的材料讓學(xué)生動(dòng)手操作,通過(guò)量、撕拼、折拼等實(shí)驗活動(dòng),讓學(xué)生得到的不僅僅是三角形內角和的知識,更重要的是學(xué)到了怎樣由已知知識探索未知的思維方式與方法,激發(fā)了他們主動(dòng)探索知識的欲望。通過(guò)多種實(shí)驗進(jìn)行操作驗證也讓學(xué)生明白了只要善于思考,善于動(dòng)手就能找到解決問(wèn)題的'方法。
雖然,在教學(xué)中也還有一些不順利的地方,比如一些動(dòng)手能力差的學(xué)生未能及時(shí)跟進(jìn),對于方法不對的學(xué)生未能及時(shí)指導和幫助等。但是本堂可采用這樣的方式展開(kāi)教學(xué)是學(xué)生喜歡的也是有成效的。
三角形內角和教學(xué)反思5
《三角形內角和定理的證明》我認為本節的重點(diǎn)是通過(guò)證明三角形的內角定理讓學(xué)生感悟出輔助線(xiàn)的做法。證明的過(guò)程中,我通過(guò)課前準備好的三角形道具,讓我的學(xué)生通過(guò)撕撕拼拼的方法,把三角形的三個(gè)內角拼成我們所熟悉的平角或者是同旁?xún)冉堑年P(guān)系,那么這個(gè)定理的證明過(guò)程就完全展示出來(lái)了,然后師生共同把我們自己的做法轉化成準確的數學(xué)語(yǔ)言加以證明,在證明的過(guò)程之中,輔助線(xiàn)就自然而然的運用到其中。這時(shí),本節的重點(diǎn)和難點(diǎn)也就自然而然地被突破,要讓學(xué)生感覺(jué)輔助線(xiàn)不是由老師強加告之而明白證明的方法,而是由學(xué)生自己在拼圖的過(guò)程中親身感悟出來(lái)的知識。
課后我認為本節中的成功之處有以下幾點(diǎn)
1、引入簡(jiǎn)單精煉,給了全體學(xué)生的'自信心,能使所以學(xué)生的注意力迅速地集中到課堂上來(lái);
2、利用拼圖的方法來(lái)找到“三角形內角和定理”的證明方法的過(guò)程中,學(xué)生充分地配合,學(xué)生的思維得到了最大限度的發(fā)揮,而且采用此種方法來(lái)引出輔助線(xiàn)在幾何中應用,巧妙地分散了本節的重點(diǎn)和難點(diǎn),事實(shí)也證明學(xué)生的接受程度很好;
3、教師在多媒體上展示每個(gè)三角形都是用三種不同顏色的彩紙拼成的,學(xué)生在學(xué)習的過(guò)程中看起來(lái)會(huì )更加的清晰、醒目;
課后我認為本節課中的不足之處:
1、在學(xué)生拼圖尋求“三角形內角和定理”證明之前的鋪墊,有些過(guò)快,導致個(gè)別學(xué)生不太明白這些鋪墊對于利用拼圖來(lái)證明定理時(shí)有什么用途;
2、還是沒(méi)有改掉急躁的毛病,一些問(wèn)題還是急于說(shuō)出答案,沒(méi)有給學(xué)生們足夠的思考時(shí)間,這是其一。其二,教師講得過(guò)多,沒(méi)有給學(xué)生充足的自主權,沒(méi)有把課堂還給學(xué)生。針對自己的優(yōu)點(diǎn)和缺點(diǎn),在以后的教學(xué)工作中要注意積累和進(jìn)步。
三角形內角和教學(xué)反思6
本節課我基本達到了要求,具體表現在以下2個(gè)方面。
1、為學(xué)生營(yíng)造了探究的情境。
學(xué)習知識的最佳途徑是由學(xué)生自己去發(fā)現,因為通過(guò)學(xué)生自己發(fā)現的知識,學(xué)生理解的最深刻,最容易掌握。因此,在數學(xué)教學(xué)中,教師應提供給學(xué)生一種自我探索、自我思考、自我創(chuàng )造、自我表現和自我實(shí)現的實(shí)踐機會(huì ),使學(xué)生最大限度的投入到觀(guān)察、思考、操作、探究的活動(dòng)中。上述教學(xué)中,我在引出課題后,引導學(xué)生自己提出問(wèn)題并理解內角與內角和的概念。在學(xué)生猜測的基礎上,再引導學(xué)生通過(guò)探究活動(dòng)來(lái)驗證自己的觀(guān)點(diǎn)是否正確。當學(xué)生有困難時(shí),教師也參與學(xué)生的`研究,適當進(jìn)行點(diǎn)撥。并充分進(jìn)行交流反饋。給學(xué)生創(chuàng )造了一個(gè)寬松和諧的探究氛圍。
2、充分調動(dòng)各種感官動(dòng)手操作,享受數學(xué)學(xué)習的快樂(lè )。
在驗證三角形的內角和是180度的過(guò)程當中,大部分同學(xué)都是用度量的方法,此時(shí),我引導學(xué)生:180度是什么角?我們能否把三個(gè)內角轉化一下呢?經(jīng)過(guò)這么一提示,出現了很多種方法,有的是把三個(gè)角剪下來(lái)拼成一個(gè)平角,有的用兩個(gè)大小相等的直角三角形拼成一個(gè)正方形,還有的是用折紙的方法,極大地調動(dòng)了學(xué)生的大腦,就連平時(shí)對數學(xué)不感興趣的學(xué)生也置身其中,充分讓學(xué)生進(jìn)行動(dòng)手操作,享受數學(xué)學(xué)習的樂(lè )趣。
新授課體現了以學(xué)生為主的教學(xué)理念,可以看到大部分同學(xué)在課堂上都積極主動(dòng)地投入學(xué)習當中,并且思維靈活,敢于大膽說(shuō)出自己的想法,掌握了知識之后能夠靈活地應用,教學(xué)效果比較好。
三角形內角和教學(xué)反思7
三角形內角和,是在學(xué)生認識了三角形的特點(diǎn)和分類(lèi)的基礎上進(jìn)一步對三角形內角之間的關(guān)系的學(xué)習和探究。學(xué)生已經(jīng)掌握了三角形的概念、分類(lèi),熟悉了鈍角、銳角、平角這些角的知識。對于三角形的內角和是多少度,學(xué)生是不陌生的,在這個(gè)過(guò)程中孩子們知道了內角的概念,但是他們卻不知道怎樣才能得出三角形的內角和是180度。因此本節課我提出的研究的重點(diǎn)是:驗證三角形的`內角和是180度。
在上課前我通過(guò)故事情境導入:“大三角形”將軍和“小三角形”將軍內角和一樣大嗎?引起同學(xué)們思考,激發(fā)出學(xué)生探究學(xué)習的熱情。接著(zhù)學(xué)生討論:有什么辦法可以驗證得出這樣的結論。學(xué)生首先提出度量角的度數的方法,之后通過(guò)測量角的度數,發(fā)現有的三角形內角和是180°,有的非常接近180°,讓學(xué)生發(fā)現測量角的度數時(shí)容易產(chǎn)生誤差,方法具有一定的局限性。之后學(xué)生通過(guò)撕角拼一拼的方法進(jìn)行驗證。通過(guò)“合作探究,實(shí)驗論證”生動(dòng)地詮釋了新教育的基本理念。
本課新知識傳授很好的把握三個(gè)環(huán)節:
1.重視動(dòng)手操作,讓學(xué)生在探究中收獲知識。
《數學(xué)課程標準》指出:“有效的數學(xué)學(xué)習活動(dòng)不能單純地依賴(lài)模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習數學(xué)的重要方式!北竟澱n通過(guò)量、折、剪、拼等多種活動(dòng),使學(xué)生主動(dòng)探究,找到新舊知識的聯(lián)系,得出研究問(wèn)題的結論,有利于學(xué)生培養“空間觀(guān)念”和動(dòng)手操作能力。讓學(xué)生獨立思考,教師引導學(xué)生討論驗證方法,掌握要領(lǐng)。還有什么辦法可以驗證得出這樣的結論?學(xué)生就發(fā)揮想象,提出度量、折一折、拼一拼等方法。
2.在動(dòng)手操作中驗證猜想。
讓學(xué)生拿出課前準備的銳角三角形、直角三角形、鈍角三角形,通過(guò)撕拼角的方式,小組合作交流,驗證猜想,得出任意三角形的內角和是180°的結論。
3.重視問(wèn)題預設,培養“空間觀(guān)念”。
“問(wèn)題的提出往往比解答問(wèn)題更重要”,其實(shí)三角形內角和是多少?大部分的學(xué)生已經(jīng)知道了這一知識,所以很輕松地就可以答出。但是學(xué)生“知其然而不知其所以然”,所以我特別重視問(wèn)題的提出,再讓學(xué)生各抒已見(jiàn),暢所欲言,鼓勵學(xué)生傾聽(tīng)他人的方法,鼓勵學(xué)生發(fā)揮想象,鼓勵學(xué)生動(dòng)手操作,鼓勵學(xué)生驗證猜想,培養學(xué)生“空間觀(guān)念”。我在歸納總結環(huán)節,有意識地培養學(xué)生的推理能力,邏輯思維能力,增強了語(yǔ)言表達能力。最后通過(guò)習題鞏固三角形內角和知識,培養學(xué)生思維的廣闊性,強化了學(xué)生對這節課的掌握。
作為一名新教師,在接下來(lái)的教學(xué)中,我要學(xué)會(huì )大膽放手,輕松自己,發(fā)展學(xué)生。放手讓學(xué)生自己去思考去做,那怕他想錯了做錯了,只有這樣他們才有機會(huì )知道自己錯了錯在哪兒,給他們更自由更廣闊的發(fā)展空間,也只有這樣才能喚起他們思考的欲望,也只有這樣才能揚起他們創(chuàng )造的風(fēng)帆!
三角形內角和教學(xué)反思8
“三角形內角和”是人教版數學(xué)四年級下冊的一節探索與發(fā)現課,讓學(xué)生在學(xué)習了三角形的特征、高以及三角形分類(lèi)的基礎上,進(jìn)一步研究三角形三個(gè)角的關(guān)系。本節課學(xué)生對知識點(diǎn)的掌握還不錯,但是,這一節課還有很多不足之處,需要加以改進(jìn):
一、優(yōu)點(diǎn):
1、教學(xué)設計不錯,環(huán)節緊湊,思路清晰。
2、重視操作過(guò)程,時(shí)間把握得好。本節課用了大量的時(shí)間來(lái)讓學(xué)生做小組實(shí)驗,從而讓他們自己感知三角形內角和是180°,印象深刻。
3、能注意前后照應,解決了前面的.疑問(wèn)。在講授新課前,設置一個(gè)疑問(wèn)“為什么同一個(gè)三角形不能有兩個(gè)直角?”以此來(lái)吸引學(xué)生,找出三角形內角和的特性。在掌握了三角形內角和是180°后,再次把問(wèn)題提出來(lái),讓學(xué)生解決。
4、板書(shū)巧妙,一步步引入課題。先是讓學(xué)生復習“三角形”的定義,接著(zhù)簡(jiǎn)單說(shuō)明什么是“三角形內角”,最后再講授三角形三個(gè)內角度數的和叫做“三角形內角和”。
5、課堂紀律好,氣氛活躍,學(xué)生踴躍積極。學(xué)生在小組活動(dòng)時(shí),活躍而有序,上課時(shí)能認真聽(tīng)講,積極舉手。同時(shí),實(shí)行小組評價(jià)更是發(fā)揮了學(xué)生的主動(dòng)性。
6、求三角形內角和的方法,一個(gè)比一個(gè)直觀(guān)、生動(dòng)。從量一量、算一算,到剪一剪、折一折,讓學(xué)生更容易感受到三角形內角和是180°。
7、練習題設計得比較好,特別是判斷題,都是學(xué)生平時(shí)容易出錯的題目,在課堂上用比較直觀(guān)的課件顯示出來(lái),讓學(xué)生的印象深刻。組合題也很有靈活性,先是找出能組成三角形的度數,然后根據度數判斷出是什么三角形。
8、能尊重學(xué)生的意見(jiàn),有的小組沒(méi)有在算一算的時(shí)候,沒(méi)有得出180°的結果,老師能夠分析其中的原因。
二、不足之處:
1、在老師給出“畫(huà)有2個(gè)內角是直角的三角形”的任務(wù)時(shí),學(xué)生明顯是畫(huà)不出來(lái)。但是教師也可以把學(xué)生失敗的作品展示出來(lái),照應之后的講解。而不能一帶而過(guò)。
2、如果量一量的方法,不能讓人信服,要在后面打個(gè)“?”,等到解決疑問(wèn)后,再去掉。
3、在進(jìn)行剪一剪、折一折的活動(dòng)時(shí),老師應該先用板書(shū)上的三角形來(lái)示范一次,告訴學(xué)生應該怎么做。因為有些學(xué)生折不出來(lái)。拼的時(shí)候,也有出錯。
4、把三角形拼成平角后,要用直尺或者是量角器測量一下,看看得出的圖形是不是平角,要用嚴謹的態(tài)度對待,不能光用眼睛來(lái)判斷。
5、老師注意提醒學(xué)生讀題的時(shí)候要規范,要讀出度數單位,這很好。但是,在做題練習時(shí),應該請一兩個(gè)學(xué)生在黑板上做,這樣也便于教師提醒學(xué)生,在書(shū)寫(xiě)時(shí),也要注意寫(xiě)上度數單位,強調格式。
三角形內角和教學(xué)反思9
一、教材分析
三角形的內角和這堂課的內容中心的知識點(diǎn)是一句話(huà):三角形的內角和是180度。學(xué)生很容易掌握。但是,三角形的內角和為什么是180度,教材采用了觀(guān)察三角板,引導學(xué)生提出疑問(wèn):是不是所有的三角形內角和都是180度,進(jìn)而用三種不同類(lèi)型的三角形折一折,驗證出這個(gè)結論?梢哉f(shuō),教材本身的編排就是讓學(xué)生在動(dòng)手操作中自主得出結論,而不是死記硬背。
一、操作盲點(diǎn)
在教學(xué)中,我按照教材的意圖,引導學(xué)生動(dòng)手操作推導出三角形的內角和。讓我感到遺憾的是,許多學(xué)生不知道如何去折三角形,以巡視的過(guò)程中,發(fā)現了許多錯誤的折法。我想,這一環(huán)節采用小組合作的形式也許會(huì )更好。但是小組合作有時(shí)候也會(huì )流于形式,不利于一些中下等學(xué)生自主思考。在小組合作這一形式的運用上,想達到效果真的是很難以把握的事情。
三、語(yǔ)言表達
不過(guò),讓我感到高興的事,這一段時(shí)間一直在做的事情終于有了一點(diǎn)頭緒,這一學(xué)期來(lái),我一直在注重讓學(xué)生用語(yǔ)言表達出自己的思想,昨天在課上,我發(fā)現有一些學(xué)生很愿意去說(shuō),而且說(shuō)出來(lái)話(huà)的還是蠻有一點(diǎn)數學(xué)語(yǔ)言的味道的。譬如想想做做第1題,求一個(gè)直角三角形中一個(gè)銳角的.度數時(shí),大部分學(xué)生是用90度去減的,我問(wèn)了一個(gè)為什么?有學(xué)生當即就說(shuō):是因為直角三角形另外兩個(gè)銳角的和加起來(lái)是90度,所以只要用90度去減就可以了。很簡(jiǎn)單的一句話(huà),讓我很有成功感,因為出自學(xué)生的口中,我班上是這樣一種情況,大多數學(xué)生會(huì )做但是卻不愿意用語(yǔ)言去表達,而我一向認為,語(yǔ)言是思維的外殼,不說(shuō)如何能表達自己的思想,大膽自信地表達自己的語(yǔ)言,對自己的性格也是一種很好的訓練。所以強調一定要去說(shuō)。經(jīng)過(guò)一段時(shí)間的強調,終于初見(jiàn)希望。真是心情很好。
今天講了三角形的內角和,因為有些學(xué)生已經(jīng)知道了三角形的內角和是180度,而且為了使課上生動(dòng)我故意沒(méi)有讓他們課前預習。當我揭示課題后,學(xué)生中有幾位按捺不住激動(dòng),小聲嘀咕是180度。我于是順勢提問(wèn),同意他們的意見(jiàn)的舉手,一半以上的學(xué)生不約而同舉起了手。我說(shuō)到底是不是呢?你們有什么辦法可以去驗證。我讓他們拿出課前準備的三角形,小組討論后動(dòng)手驗證。經(jīng)過(guò)巡視發(fā)現所有的小組都想到了通過(guò)量出各個(gè)三角形的內角再計算出內角和來(lái)驗證的。我讓他們再想想有沒(méi)有別的方法可以驗證出三角形的內角和是180度的?上е挥袃蓚(gè)小組通過(guò)動(dòng)手折一折來(lái)驗證的,在他們的演示后我在黑板上的三角形上板書(shū)出各個(gè)角的度數及三只角的度數和的算式。同時(shí)我讓他們對直角三角形的內角和等式進(jìn)行觀(guān)察,他們發(fā)現了其中的兩個(gè)銳角和總是90度。我提問(wèn)通過(guò)折我們把三角形的三只內角拼在一起組成一個(gè)平角,還有沒(méi)有其他辦法也可以把三只角拼一拼的,可惜沒(méi)有一個(gè)同學(xué)想到把三只角撕下來(lái)拼的。以前教的時(shí)候好像學(xué)生想到的方法比現在的學(xué)生多,這讓我很難過(guò)和想不通。是不是我平時(shí)的教學(xué)沒(méi)有最大程度地調動(dòng)起學(xué)生的學(xué)習激情?是不是我平時(shí)的教學(xué)有過(guò)于急而沒(méi)有給學(xué)生足夠的時(shí)間思考?是不是我平時(shí)總有越俎代庖的現象?……可是我覺(jué)得平時(shí)我還是就最大程度注意到這些的,看來(lái)教學(xué)的確是值得我們永久去實(shí)踐、探索的。
三角形內角和教學(xué)反思10
筆者在執教四上數學(xué)時(shí),接到數學(xué)片開(kāi)課的通知,反復思量最后選擇了四下的《三角形的內角和》這一教學(xué)內容。一開(kāi)始有的老師認為不可以,因為四下的《三角形的內角和》這個(gè)內容之前需要先上三個(gè)內容,即:認識三角形的特性,會(huì )根據三角形的邊、角特點(diǎn)給三角形分類(lèi),知道三角形任意兩邊之和大于第三邊。如果給四上的學(xué)生上這個(gè)內容就違背了教材內容編排的有序性和知識的連續性。但是,難道一定要了解了三角形的特性,對三角形進(jìn)行分類(lèi),知道三角形的三邊關(guān)系之后再來(lái)研究三角形的內角和?難道就不能在學(xué)生對三角形有一定的感性認識的基礎上,學(xué)習了角的分類(lèi)和會(huì )量角之后,讓學(xué)生去探究三角形的內角和進(jìn)而研究多邊形的內角和?最后經(jīng)過(guò)反復思考,筆者作大膽的嘗試,最終還是選擇了這一教學(xué)內容。因為我們不能過(guò)于迷信我們的教材,不能盯死一套教材,不能過(guò)分的依賴(lài)教材。正如開(kāi)頭時(shí)講到的,教材是滯后的,生活是現實(shí)的,我們教師則應該勇于探索,敢于實(shí)踐,充分發(fā)揮教材的優(yōu)勢,把握教材的體系,做教材的開(kāi)拓者。
新一輪基礎教育課程改革,改變了課程內容難繁偏舊和過(guò)于注重書(shū)本知識的現狀,賦予教師更多的權力,教師不僅僅是課程的實(shí)施者,同時(shí)還是課程的開(kāi)發(fā)者。而把握教材提出自己的教學(xué)目標和教學(xué)重難點(diǎn)是對一個(gè)教師最基本的要求。新課程背景下的數學(xué)教師要轉變觀(guān)念,不能成為教材的奴隸,而要對教材內容進(jìn)行開(kāi)發(fā),變教材是學(xué)生的世界為世界是學(xué)生的教材,與學(xué)生共同討論、探索,在不斷的積累中形成開(kāi)放而充滿(mǎn)活力的課堂。
在實(shí)驗教科書(shū)四年級上冊數學(xué)第二單元《角的度量》的學(xué)習過(guò)程中,學(xué)生已經(jīng)學(xué)會(huì )量角,知道了角的分類(lèi),于是筆者靈活的處理了教材,在學(xué)生對三角形有一定的感性認識,剛學(xué)會(huì )了量角以及對角的分類(lèi)有了一定的認識的基礎上制定了新的'教學(xué)目標: 1、在學(xué)生已有的認知基礎上,讓學(xué)生經(jīng)歷量一量、拼一拼等數學(xué)活動(dòng)驗證三角形內角和是180°,并會(huì )應用這一知識解決四邊形的內和角。2、讓學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力。并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透“轉化”數學(xué)思想。3.使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習數學(xué)的興趣。教學(xué)重點(diǎn)是引導學(xué)生用量、撕、拼等方法驗證三角形的內角和是180度。教學(xué)難點(diǎn)是引導學(xué)生通過(guò)自主探索來(lái)得出任意三角形的內角和等于180度,進(jìn)而利用這個(gè)知識來(lái)解決四邊形的內角和。多次
試教下來(lái),發(fā)現對教學(xué)目標的定位是比較明確的,重點(diǎn)放在讓學(xué)生體驗驗證三角形的內角和等于180度這一數學(xué)探究過(guò)程。但對于教學(xué)重難點(diǎn)的把握是經(jīng)過(guò)反復修改而形成的。因為,這一內容如果只是讓學(xué)生知道三角形的內角和那么就沒(méi)有深度,而本節課的深度究竟應該挖到哪里呢?事后發(fā)現,四年級上學(xué)期的學(xué)生在教師的引導幫助下,能夠借助三角形的內角和等于180度進(jìn)而得出四邊形的內角和等于360度,但是,如果要學(xué)生進(jìn)而得出五邊形,六邊形的內角和,最終發(fā)現所有多邊形內角和的計算規律,在這一節課上是實(shí)現不了的。所以,本節課的難點(diǎn)定位是學(xué)生能夠根據三角形的內角和等于180度,知道可以將四邊形變成兩個(gè)三角形,一個(gè)三角形的內角和等于180度,那么四邊形的內角和等于360度。
肖川認為“對教師而言,上課是與人的交往,而不單純是勞作;是藝術(shù)創(chuàng )造而不僅僅是教授;是生命活動(dòng)和自我實(shí)現的方式,而不是無(wú)謂的犧牲和時(shí)光的耗費;是自我發(fā)現和探索真理的過(guò)程,而不是簡(jiǎn)單地展示結論”。
所以,為了實(shí)現教學(xué)過(guò)程的創(chuàng )新與生成,筆者經(jīng)過(guò)多次的實(shí)踐,本節課最后的教學(xué)過(guò)程設計方案如下:從平面圖形引入,然后通過(guò)長(cháng)方形來(lái)揭示內角概念,通過(guò)探究長(cháng)方形的內角和是多少?自然引入三角形有幾個(gè)內角,三角形的內角和是多少?你們確定嗎?讓學(xué)生大膽的猜想,學(xué)生都能想到三角尺中的兩個(gè)特殊的三角形的內角和等于180度,然后追問(wèn):我們手中的三角尺的內角和是180度,是不是說(shuō)明三角形的內角和都等于180度?這樣通過(guò)特殊三角形到一般的三角形,引導學(xué)生自主探索三角形的內角和是多少度。學(xué)生大多認為通過(guò)測量可以來(lái)驗證,但是活動(dòng)之后用測量的方法難免有誤差,于是老師就追問(wèn):有的同學(xué)量出來(lái)是正好是180度,有的是接近180度?這樣你能確定三角形的內角和等于180嗎?那么怎么辦呢?你有什么其他的好辦法呢?接著(zhù)教師引導“如果三角形的內角和是180度,那么把它的三個(gè)內角拼起來(lái),你覺(jué)得會(huì )拼成什么?”引出了用拼一拼一方法將三角形的三個(gè)內角拼成一個(gè)平角。而學(xué)生對于怎么拼還有疑惑,于是教師就在黑板上演示用撕的方法將三個(gè)內角拼在一起,然后再讓各小組試試用拼一拼的方法,最后在交流的時(shí)候特地找那些量的不準的小組進(jìn)行展示,所有的小組拼出來(lái)的結果都是等于180度,這樣就能得出我們想要的結論。練習環(huán)節先是知道其中的兩個(gè)角求第三個(gè)角,交流時(shí)體現了算法的多樣化,然后是讓學(xué)生用兩塊完全一樣的三角形拼成一個(gè)圖形,這樣的題目比較有思考的空間,也有創(chuàng )意性,因為拼成的圖形可以是大三角形,長(cháng)方形,正方形,平行四邊形。如果是看成大三角形,那么這個(gè)三角形的內角和還是等于180度,即又鞏固和深化了三角形的內角和等于180度,而長(cháng)方形,正方形的內角和在一開(kāi)始上課時(shí)已經(jīng)知道是360度,那么現在我們學(xué)習了三角形的內角和等于180度之后,現在我們可以將它們的內角和看成什么呢?學(xué)生會(huì )說(shuō)看成兩個(gè)一樣的三角形,兩個(gè)三角形的內角和相加等于360度。而接著(zhù)追問(wèn)平行四邊形的內角和呢?學(xué)生也能自然的說(shuō)出。最后追問(wèn)一個(gè)任意的四邊形的內角和呢?有學(xué)生會(huì )說(shuō),可以看成兩個(gè)三角形,但這兩個(gè)三角形的大小形狀不同。但是,任意三角形的內角和都等于180度,所以四邊形的內角和都可以看成是兩個(gè)三角形的內角和,進(jìn)而得出了四邊形的同角和,同時(shí)發(fā)了練習紙引導學(xué)生在課外探究五邊形、六邊形的內角和是多少。這樣,既培養了學(xué)生的觀(guān)察能力和歸納概括能力,又體現了學(xué)生動(dòng)手實(shí)踐、合作交流,自主探索的學(xué)習方式,同時(shí)也培養了學(xué)生探索能力和創(chuàng )新精神,順利的達成了教學(xué)目標,解決了教學(xué)重難點(diǎn)。
幾節課上下來(lái),筆者越來(lái)越肯定,教師完全可以做教材的開(kāi)拓者,只要合理的對教材進(jìn)行了整改分析,巧妙的設計練習,準確的了解學(xué)生的認知起點(diǎn),反復的琢磨教學(xué)過(guò)程并進(jìn)行創(chuàng )新,對學(xué)習材料進(jìn)行思考與選擇,就能打破教材的編排次序,讓學(xué)生重新整合知識,實(shí)現知識的優(yōu)化與提升,最終促進(jìn)學(xué)生創(chuàng )造與發(fā)展。
三角形內角和教學(xué)反思11
本節課的重點(diǎn)是引導學(xué)生探究三角形的內角和,同時(shí)還要使學(xué)生學(xué)會(huì )用三角形的內角和是180°來(lái)解決有關(guān)計算問(wèn)題。
課的開(kāi)始,我讓學(xué)生計算三角尺的3個(gè)內角的和,很自然地引出了“其它三角形的內角和是否也是180°嗎?”的猜想。當時(shí)有同學(xué)說(shuō)不是,又有同學(xué)說(shuō)是的。我告訴學(xué)生:任何一項科學(xué)研究或發(fā)明創(chuàng )造都要經(jīng)歷從猜想到驗證的過(guò)程。那么這個(gè)猜想可以用什么方法來(lái)證明呢?大部分同學(xué)首先想到先任意畫(huà)一個(gè)三角形,再用量角器量一量的方法,我讓學(xué)生去畫(huà)去量了,結果有些學(xué)生量出的內角和的度數要高于180°或低于180°,我讓學(xué)生討論一下有哪些因素會(huì )影響到研究結果的準確性。過(guò)后,我引導學(xué)生:180度是什么角?我們能否把三個(gè)內角轉化一下呢?經(jīng)過(guò)這么一提示學(xué)生想到把三個(gè)角剪下來(lái)拼成一個(gè)平角,還有學(xué)生想到折的方法。
學(xué)生在操作過(guò)程中受到了啟發(fā),最后學(xué)生得出:任意三角形的內角和都是180°。學(xué)生在動(dòng)手操作中享受到了學(xué)習數學(xué)的樂(lè )趣。后面通過(guò)一系列的練習活動(dòng),學(xué)生進(jìn)一步明確三角形的內角和與三角形的`大小無(wú)關(guān),并體會(huì )到求直角三角形的一個(gè)銳角可以直接用90°減另一個(gè)銳角的度數來(lái)計算,培養了學(xué)生思維的靈活性,對三角形的內角和也有了更清晰的認識了。
三角形內角和教學(xué)反思12
“三角形內角和”是北師大版數學(xué)四年級下冊第二單元認識圖形的一節探索與發(fā)現課,使學(xué)生在學(xué)習了三角形的特征、高以及三角形分類(lèi)的基礎上,進(jìn)一步研究三角形三個(gè)角的關(guān)系。根據教學(xué)目標和學(xué)生掌握知識的情況,課堂上我圍繞以下幾點(diǎn)去完成教學(xué)目標:
一、創(chuàng )設情境,營(yíng)造研究氛圍。
怎樣提供一個(gè)良好的研究平臺,使學(xué)生有興趣去研究三角形內角的和呢?為此我拋出大、小兩個(gè)三角形爭吵的情境,讓學(xué)生評判誰(shuí)說(shuō)的對?為什么爭吵?導入課引出研究問(wèn)題!叭切蔚膬冉侵傅氖鞘裁?”“三角形的內角和是多少?”激發(fā)學(xué)生求知的欲望,引起探究活動(dòng)。我在導入“研究三角形內角和”時(shí),沒(méi)有按課前設計的進(jìn)行,學(xué)生直接說(shuō)出“三角形的內角和是180°”。而我本身卻沒(méi)有順勢進(jìn)行引導,直接拋出“研究三角形內角和”這一任務(wù),更巧妙的'是借此機會(huì )鼓勵學(xué)生,以“驗證三角形內角和是不是1800”入手。這一處成為本節課最大的失誤。
二、小組合作,自主探究。
“是否任何三角形內角和都是180°”,如何驗證,這正是小組合作的契機。通過(guò)小組內交流,使學(xué)生認識到可以通過(guò)多種途徑來(lái)驗證,可以量一量、拼一拼、折一折,讓學(xué)生在小組內完成從特殊到一般的研究過(guò)程。然后再小組匯報研究結果以及存在問(wèn)題。例如,有些小組的學(xué)生量出內角和的度數要高于180°或低于180°,先讓學(xué)生說(shuō)一下有哪些因素會(huì )影響到研究結果的準確性。
三、練習設計,由易到難。
研究是為了應用,在應用“三角形內角和是180°”這一結論時(shí),第一層練習是已知三角形兩個(gè)內角的度數,求另一個(gè)角。第二層練習是判斷題,讓學(xué)生應用結論檢驗語(yǔ)言的嚴密性。第三層練習是讓學(xué)生用學(xué)過(guò)的知識解決四邊形、五邊形、六邊形的內角和。練習設計提問(wèn)體現開(kāi)放性,“你還知道了什么”,讓學(xué)生根據計算結果運用已有經(jīng)驗去判斷思索。
四、教學(xué)中存在不足。
在教學(xué)中,由于我對學(xué)生了解的不夠充分,沒(méi)有很好的電動(dòng)學(xué)生發(fā)言的積極性,另外的原因是教師本身語(yǔ)言枯燥,過(guò)渡語(yǔ)設計的不夠精彩,也影響了學(xué)生的學(xué)習興趣,以后應引起重視。在設計教案時(shí)要了解學(xué)生,深入教材,精心設計。
三角形內角和教學(xué)反思13
在“三角形內角和”這一內容的教學(xué)時(shí),采用的教學(xué)方式是教給學(xué)生測量或者是撕拼的方法,然后得出結論,進(jìn)行應用。雖然可以節省時(shí)間,短期內收到較好的效果,特別是要求學(xué)生把結論給記住,學(xué)生應用結論解決相關(guān)問(wèn)題一般是不會(huì )有困難的。但把數學(xué)知識的發(fā)生過(guò)程輕描淡寫(xiě),缺乏探究過(guò)程,這樣學(xué)數學(xué),學(xué)生感覺(jué)學(xué)得累,很乏味,在他們的感受中,數學(xué)漸漸地變成枯燥無(wú)味的了。本節課應著(zhù)眼于學(xué)生的能力和學(xué)習數學(xué)的興趣,上課一開(kāi)始,可通過(guò)創(chuàng )設動(dòng)畫(huà)的問(wèn)題情境,以較好地激發(fā)了學(xué)生的學(xué)習興趣,然后給學(xué)生提供一些材料,讓學(xué)生以先獨立思考再合作的方式,為學(xué)生留有足夠的空間去探究出結論。學(xué)生通過(guò)測量、撕拼、折疊等方法,探究出三角形內角和的結論。方法不是唯一的,對于學(xué)生通過(guò)獨立思考出來(lái)的.解決問(wèn)題的多種策略,教師適時(shí)給予鼓勵表?yè)P,特別是對學(xué)生解決問(wèn)題的思維方法給予充分的肯定。在這一過(guò)程中,學(xué)生又出現不同的理解和觀(guān)點(diǎn),產(chǎn)生真實(shí)的辯論,從而更深刻地理解了“三角形內角和是180度的結論。如此學(xué)生收獲的不僅僅是數學(xué)知識,更多的是對學(xué)習數學(xué)的興趣和信心,獲得的是解決問(wèn)題的策略和方法。
而后,通過(guò)拓展應用環(huán)節,再讓學(xué)生通過(guò)應用練習和發(fā)展性練習,既鞏固了本節課的知識,又培養了學(xué)生思維的靈活性和深刻性,使學(xué)生進(jìn)一步深入理解了“任何三角形內角和都是180度!边@一結論,并大膽猜測推算出長(cháng)方形和正方形的內角和。
三角形內角和教學(xué)反思14
有許多內容我們教過(guò)多次,但如何教教學(xué)效果更好,值得我們不斷地去探索。
學(xué)習了《三角形的內角和》一課,回想一下,有許多想法:三角形的內角和為180°這一結論學(xué)生在小學(xué)就已經(jīng)知道,只不過(guò)那時(shí)是通過(guò)度量得出來(lái)的。因此這一結論的證明思路和方法成為本節課的重點(diǎn)。
如何證明這一結論,是小組合作學(xué)習的契機。在上新課之前,我事先讓每個(gè)學(xué)生剪好了一個(gè)三角形,這樣,就可以讓學(xué)生通過(guò)小組合作交流的方式來(lái)驗證。教學(xué)中,讓學(xué)生把三角形的任意兩個(gè)角剪下來(lái),把三個(gè)內角拼合在一起,會(huì )得到一個(gè)180°的角。在這一過(guò)程中,學(xué)生很快進(jìn)入狀態(tài),積極性較高。并且有的小組整出了多種拼合方法,還有一個(gè)小組通過(guò)折疊的.方式來(lái)驗證,我都及時(shí)給予肯定。接下來(lái)讓學(xué)生把得到的圖形畫(huà)在練習本上,從中有沒(méi)有受到啟發(fā),探索出證明思路。這一過(guò)程中,有些同學(xué)能拼出但畫(huà)不出圖形,導致了找不出證明的方法。下一步在證明的時(shí)候,有的同學(xué)能說(shuō)出理由,但寫(xiě)的時(shí)候無(wú)從下手。說(shuō)明學(xué)生不論是在邏輯思維方面還是幾何語(yǔ)言方面的表達上都存在著(zhù)相當大的困難。在后續的學(xué)習中需要慢慢培養學(xué)生這方面的能力。
教學(xué)有法,教無(wú)定法,學(xué)生能學(xué)會(huì )的方法就是好方法。
三角形內角和教學(xué)反思15
學(xué)生在學(xué)習了三角形的特征以及三角形分類(lèi)的基礎上,進(jìn)一步研究三角形三個(gè)角的關(guān)系。根據教學(xué)目標和學(xué)生掌握知識的情況,課堂上我圍繞以下幾點(diǎn)去完成教學(xué)目標:
一、創(chuàng )設情境,營(yíng)造研究氛圍
怎樣提供一個(gè)良好的研究平臺,使學(xué)生有興趣去研究三角形內角的和呢?為此我拋出大、小兩個(gè)三角形爭吵的情境,讓學(xué)生評判誰(shuí)說(shuō)的對?為什么爭吵?導入課引出研究問(wèn)題!叭切蔚膬冉侵傅氖鞘裁?”“三角形的內角和是多少?”激發(fā)學(xué)生求知的欲望,引起探究活動(dòng)。我在研究三角形內角和時(shí),沒(méi)有按教材設計的量角求和環(huán)節進(jìn)行,而是從學(xué)生熟悉的正方形紙的內角和是360°入手,再把正方形紙沿著(zhù)對角線(xiàn)剪開(kāi)后會(huì )怎樣呢?猜想一下其中的1個(gè)三角形的內角和是幾度?學(xué)生很快得出一個(gè)直角三角形內角和是180°。猜測以下是不是各種形狀、大小不同的三角形內角和都是180°呢?再組織學(xué)生去探究,動(dòng)手驗證,并得出結論。生在不斷的發(fā)現中很自然地得到“三角形內角和是180°”的猜想。這樣既使學(xué)生在這個(gè)探究過(guò)程中得到快樂(lè )的情感體驗,又使學(xué)生有高度的熱情去繼續深入地研究“是否任何三角形內角和都是180°”。
二、小組合作,自主探究
任何一項科學(xué)研究活動(dòng)或發(fā)明創(chuàng )造都要經(jīng)歷從猜想到驗證的過(guò)程!笆欠袢魏稳切蝺冉呛投际180°”,這個(gè)猜想如何驗證,這正是小組合作的契機。通過(guò)小組內交流,使學(xué)生認識到可以通過(guò)多種途徑來(lái)驗證,可以量一量、拼一拼、折一折,讓學(xué)生在小組內完成從特殊到一般的研究過(guò)程。然后再小組匯報研究結果以及存在問(wèn)題。教師根據學(xué)生實(shí)際情況充分把握好生成性資源,讓學(xué)生認識到有些客觀(guān)原因會(huì )影響到研究的結果的.準確性。例如,有些小組的學(xué)生量出內角和的度數要高于180°或低于180°,先讓學(xué)生討論一下有哪些因素會(huì )影響到研究結果的準確性。
三、練習設計,由易到難
研究是為了應用,在應用“三角形內角和是180°”這一結論時(shí),第一層練習是已知三角形中兩個(gè)內角的度數,求另一個(gè)角。第二層練習是已知等腰三角形中頂角或底角的度數,讓學(xué)生應用結論求另外的內角度數。第三層練習是讓學(xué)生用學(xué)過(guò)的知識解決四邊形、五邊形、六邊形的內角和。練習設計提問(wèn)體現開(kāi)放性,“你還知道了什么”,讓學(xué)生根據計算結果運用已有經(jīng)驗去判斷思索。
四、教學(xué)中存在不足
在教學(xué)中,由于我對學(xué)生了解的不夠充分,讓學(xué)生自己想其它的驗證方法,難度較大,浪費了大量時(shí)間,使教學(xué)任務(wù)不能完成,練習較少,新知沒(méi)有得到充分鞏固,以后應引起重視。在設計教案時(shí)要了解學(xué)生,深入教材,精心設計。
三角形內角和教學(xué)反思16
一、設計思路:
這節課是上“三角形內角和”,因為學(xué)生對三角尺上每個(gè)角的度數比較熟悉,就從這里入手。先讓學(xué)生算出一塊三角尺三個(gè)內角的和是180°,引發(fā)學(xué)生的猜想:其它三角形的內角和也是180°嗎?接著(zhù),引導學(xué)生任意畫(huà)出不同類(lèi)型的三角形,用通過(guò)量一量、算一算,得出三角形的內角和是180°或接近180°,再引導學(xué)生通過(guò)剪拼的方法發(fā)現:各類(lèi)三角形的三個(gè)內角都可以拼成一個(gè)平角。再利用課件演示進(jìn)一步驗證,由此獲得三角形的內角和是180°的結論。這一系列活動(dòng)潛移默化地向學(xué)生滲透了“轉化”數學(xué)思想,為后繼學(xué)習奠定了必要的基礎。最后讓學(xué)生運用結論解決實(shí)際問(wèn)題,練習的安排上,注意練習層次,共安排三個(gè)層次,逐步加深。在整個(gè)教學(xué)設計中,本著(zhù)“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng )設問(wèn)題情境,讓學(xué)生去實(shí)驗、去發(fā)現新知識的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探索的活動(dòng)中掌握知識,積累數學(xué)活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。
二、教學(xué)反思
這篇教學(xué)設計通過(guò)施教,符合新課程理念,轉變學(xué)生的學(xué)習方式,能讓學(xué)生以小組合作的形式進(jìn)行問(wèn)題的探索與研究,學(xué)生在整節課中學(xué)得輕松。整節課的教學(xué)設計,條理清晰,層次清楚,教學(xué)一開(kāi)始從學(xué)生熟悉的三角板抽象出特殊的三角形探討三角形的.內角和是180°,接下來(lái)很自然地引導學(xué)生探討所有的三角形的內角和是不是也是180,過(guò)渡自然且有吸引力。
但在學(xué)習活動(dòng)的過(guò)程中,首先我覺(jué)得語(yǔ)言不夠生動(dòng)、連貫,聲音也很小。其次,學(xué)生在進(jìn)行操作活動(dòng)前,我也沒(méi)有明確說(shuō)明操作方法,使學(xué)生不理解操作的用意,也沒(méi)有讓學(xué)生在操作中真正證實(shí)“三角形的內角和是180°”的結論。最后,對三角形內角和的歸納也沒(méi)有完整,等等
總之,在這節課中存在著(zhù)很多不足,今后我將花更多的時(shí)間在課堂教學(xué)方法、策略的研究上,使自己不斷進(jìn)步。
三角形內角和教學(xué)反思17
今天講解的《三角形內角和》一課,是在四年級上學(xué)期《角》的單元教學(xué)基礎上進(jìn)行教學(xué)的,在《角》的單元教學(xué)中就已經(jīng)涉及到了三角形內角和,學(xué)生對其有了初步的了解,這學(xué)期在原有的基礎上進(jìn)一步繼續學(xué)習有關(guān)知識。
首先,在教學(xué)中我對三角形的分類(lèi)進(jìn)行了復習,通過(guò)讓學(xué)生們對原有認知的回憶,為新課的學(xué)習做好鋪墊。進(jìn)而講解內角和內角和的定義,再復習平角的概念,在此基礎上,先出示長(cháng)方形和正方形,讓學(xué)生算它們的內角和,接著(zhù)出示一個(gè)長(cháng)方形,用剪刀沿一條對角線(xiàn)剪開(kāi),把平行四邊形分成兩個(gè)三角形,再讓學(xué)生們討論三角形的內角和又是多少?根據剛才的計算,學(xué)生很快反應過(guò)來(lái)說(shuō),是180度,因為360o÷2=180o。通過(guò)這一設計,使學(xué)生對三角形的內角和有了初步的認識,隨后我就跟著(zhù)提出問(wèn)題:是不是所有的三角形的三個(gè)內角和一定是180呢?從而給學(xué)生指出了本節課探究學(xué)習的目標。
然后讓學(xué)生先測量計算自己手中三角板的內角和,再一次初步得出三角形的內角和是180度這一結論。這時(shí)引導學(xué)生思考,這一結論是否具有普遍性,有的學(xué)生會(huì )提出結論不具有普遍性,因為三角板很特殊,不能代表所有的三角形,結論還不能成立,這樣就讓課堂教學(xué)到達了最關(guān)鍵的階段。我給每個(gè)小組任意分發(fā)了一個(gè)銳角三角形、直角三角形和鈍角三角形,讓學(xué)生們自己動(dòng)手測量計算,然后再總結結論。雖然這一教學(xué)環(huán)節中有個(gè)別學(xué)生對量角器的使用方法有遺忘或測量有差錯,對教學(xué)的時(shí)間和效率有一定的影響,但多數同學(xué)的測量計算結果是正確的,同時(shí)通過(guò)教師的糾正點(diǎn)撥使全體同學(xué)都掌握了正確的測量方法,培養了學(xué)生的實(shí)際動(dòng)手操作能力,激發(fā)了學(xué)生的學(xué)習興趣。
在測量時(shí),同學(xué)們氣氛活躍都爭先恐后的進(jìn)行測量計算,所有學(xué)生都特別積極,他們有的為了測量的誤差而爭論的面紅耳赤,有的同學(xué)也為自己精確測量而興高采烈,在測量過(guò)程中,學(xué)生們不僅復習了用量角器量角的方法,更是驗證總結出了三角形的內角和等于180度。在愉悅的教學(xué)過(guò)程中,使教學(xué)一氣呵成,分散了教學(xué)難點(diǎn),突出了教學(xué)重點(diǎn),加深了學(xué)生對本節課知識的掌握和理解,取得了較好的.教學(xué)效果。
想不到我設計的一個(gè)小小的動(dòng)手操作教學(xué),竟然調動(dòng)了學(xué)生的學(xué)習積極性,激發(fā)了學(xué)生的學(xué)習興趣,對本節課的教學(xué)產(chǎn)生了不可估計的效果,不僅點(diǎn)燃了他們求知的欲望,更激發(fā)了他們特有的童趣,讓整個(gè)數學(xué)課堂散發(fā)著(zhù)一種催人奮進(jìn)的熱情,使數學(xué)課活了起來(lái),知識動(dòng)了起來(lái),學(xué)生們的腦筋更是轉了起來(lái),課堂效率也升了起來(lái)。通過(guò)這節課的教學(xué),不僅讓我感受了教學(xué)中創(chuàng )造的“意外”精彩,同時(shí)也引起了我深深地思考,作為四年級的學(xué)生,他們活潑好動(dòng),天真可愛(ài),求知欲強,如果在課堂教學(xué)中讓他們多多的參與一些動(dòng)手操作,既培養了學(xué)生的實(shí)際動(dòng)手操作能力,又調動(dòng)了學(xué)生的學(xué)習積極性,讓學(xué)生在活躍的課堂氛圍中學(xué)習知識,利于加深學(xué)生的記憶,更好的掌握和理解所學(xué)知識。
通過(guò)這節課的教學(xué),讓我有了新的發(fā)現,相同的知識,不同的教法,效果也不相同。同時(shí)也使我認識到在學(xué)生的身上隱藏著(zhù)許多“寶藏”,只要我們善于尋找和發(fā)現,這些“寶藏”將會(huì )給我們帶來(lái)無(wú)限的財富。
三角形內角和教學(xué)反思18
1、情境的創(chuàng )設
課伊開(kāi)始讓學(xué)生猜角游戲,這時(shí)學(xué)生對三角形的三個(gè)角的關(guān)系產(chǎn)生好奇。引發(fā)他們探究的欲望。再從他們熟悉的.三角板出發(fā),聯(lián)系他們以有的知識說(shuō)說(shuō),感覺(jué)一下。從而很快的進(jìn)入新課。
2、引導獨立思考和合作交流
獨立思考是合作交流的前提,經(jīng)過(guò)獨立思考的合作才是有效的合作。在想辦法求三角形內角和這一核心問(wèn)題時(shí),先給學(xué)生獨立思考的時(shí)間,再通過(guò)小組合作,剪一剪,折一折,拼一拼等方法去探求三角形內角和的秘密。這樣學(xué)生在動(dòng)手,動(dòng)腦,動(dòng)口的過(guò)程中全員參與學(xué)習過(guò)程,經(jīng)歷知識形成的過(guò)程。
三角形內角和教學(xué)反思19
“合作探究,實(shí)驗論證”生動(dòng)地詮釋了新教育的基本理念,我在本節課新知識傳授時(shí)很好的把握三個(gè)環(huán)節。
一、通過(guò)兩個(gè)三角形因為內角和大小吵架導出新課,提出問(wèn)題到底是誰(shuí)的內角和大,激發(fā)了學(xué)生的求知欲,和學(xué)習興趣。
二、讓學(xué)生先猜想內角和的大小。教師引導學(xué)生討論驗證方法,掌握要領(lǐng)。上課開(kāi)始,我通過(guò)提問(wèn)三角板中每個(gè)角的度數以及每塊三角板的內角的和是多少?初步讓學(xué)生感知直角三角形的內角和是180,然后質(zhì)疑:這僅僅是一副三角板的內角和,而且也是直角三角形,那是不是所有的三角形中的三個(gè)內角的都是180°呢?這個(gè)問(wèn)題一提出去就激發(fā)學(xué)生的探究學(xué)習的熱情。因此接著(zhù)就讓學(xué)生討論:有什么辦法可以驗證得出這樣的結論。學(xué)生提出度量、折一折、拼一拼等方法。
三、動(dòng)手操作驗證猜想。要求學(xué)生小組合作,動(dòng)手驗證。通過(guò)小組內交流,使學(xué)生認識到可以通過(guò)多種途徑來(lái)驗證,可以量一量、撕一撕、拼一拼、折一折。在明確驗證方法后,學(xué)生在小組內通過(guò)動(dòng)手操作、記錄、觀(guān)察,驗證三角形的內角和是否為180°。之后我組織學(xué)生在全班匯報交流,有的小組通過(guò)量一量、算一算的方法,得出三角形的內角和是180°或接近180°(測量誤差);有的.小組通過(guò)撕一撕、拼一拼的方法發(fā)現:各類(lèi)三角形的三個(gè)內角可以拼成一個(gè)平角。還有的小組通過(guò)折一折、拼一拼的方法也發(fā)現:各類(lèi)三角形的三個(gè)內角都可以拼成一個(gè)平角。此時(shí)我利用課件進(jìn)行動(dòng)態(tài)演示,在演示中進(jìn)一步驗證,使學(xué)生在小組合作、自主探究、全班交流中獲得了三角形的內角和的確是180°的結論。
四、練習設計,由易到難。
這節課在練習的安排上,我注意把握練習層次,由易到難,逐步加深。在應用“三角形的內角和是180°”這一結論時(shí),第一層練習是已知三角形兩個(gè)內角度數,求另一個(gè)角。第二層練習是判斷題,讓學(xué)生應用結論思考分析,檢驗語(yǔ)言的嚴密性。第三層練習是讓學(xué)生用學(xué)過(guò)的知識解決,在沒(méi)有告知直角三角形的另一個(gè)角時(shí),如何求出第三個(gè)角。
通過(guò)一節課的學(xué)習,同學(xué)們基本掌握三角形內角和的知識,并能運用知識點(diǎn)進(jìn)行習題練習。小組合作也激發(fā)了學(xué)生們的學(xué)習興趣,效果不錯!
三角形內角和教學(xué)反思20
在學(xué)習本節課之前,幾乎每個(gè)同學(xué)都知道三角形的內角和是180°。所以,本節課的重點(diǎn)我放在:證實(shí)三角形的內角和是180°以及運用三角形內角和的知識解決基本的實(shí)際問(wèn)題。
在教學(xué)過(guò)程中,我依然重視學(xué)生之間和小組之間的合作、交流,讓學(xué)生們都去折一折,剪一剪,拼一拼,自己動(dòng)手感受三個(gè)角拼在一起可以形成一個(gè)平角,進(jìn)而證實(shí)任何三角形的內角和都是180°。這個(gè)過(guò)程非常重要,學(xué)生們在實(shí)際的操作過(guò)程中,可以進(jìn)一步加深對三角形內角和180°的理解和認知。讓學(xué)生自主的實(shí)驗、探索,調動(dòng)學(xué)生的主動(dòng)性,參與到數學(xué)的活動(dòng)中去!
并且,在剪的過(guò)程中,我演示了三種不同三角形的拼湊結果,進(jìn)一步證實(shí),無(wú)論任何的三角形,部分形狀和大小,內角和都是180°。
現在反思一下,課堂中自然有很多好的地方,學(xué)生學(xué)習的積極性也很高,但是也有一些不如意的地方,比如在剪一剪的過(guò)程中,有的同學(xué)因為沒(méi)有剪刀,沒(méi)有真誠的去操作,還有一兩個(gè)個(gè)別的學(xué)生在演示的時(shí)候沒(méi)有演示好。
還有的同學(xué),在剪之前,沒(méi)有做好標記,導致剪完之后,找不到哪個(gè)是原來(lái)三角形的角,這個(gè)是我沒(méi)有預見(jiàn)到的,因此我在第二個(gè)班級上課的時(shí)候,就提前讓學(xué)生們在三個(gè)角上面做了標注,這樣就不會(huì )再出現那樣的混亂。
另外,學(xué)生在反饋學(xué)習效果時(shí),沒(méi)有做到我想象中那樣好的順序,以及很好的語(yǔ)言表達能力,不過(guò),我做到了不慌不忙,讓學(xué)生對學(xué)生進(jìn)行糾正和幫助,課堂的氣氛和交流還是很好的。
因為學(xué)生基本的`互相交流、討論和總結的能力有了一定的提高,接下來(lái),我會(huì )進(jìn)一步的放手,把課堂一步步的再去還給學(xué)生,給學(xué)生更多的獨立學(xué)習和獨立思考的時(shí)間和空間,充分的調動(dòng)學(xué)生自學(xué)的能動(dòng)性!
【三角形內角和教學(xué)反思】相關(guān)文章:
三角形的內角和的教學(xué)反思11-24
《三角形的內角和》教學(xué)反思07-11
《三角形的內角和》的教學(xué)反思11-18
《三角形內角和》教學(xué)反思11-08
《三角形的內角和》教學(xué)反思03-03
三角形的內角和教學(xué)反思01-21
三角形的內角和教學(xué)反思02-19
《三角形的內角和》的教學(xué)反思07-30